
Syntax-Guided Program Synthesis

Rajeev Alur

University of Pennsylvania

1

2

Goal: Programming computers easier than communicating with people

Can programming be liberated, period.
David Harel, IEEE Computer, 2008

Enabling Technologies

§ More computing power
§ Mature software analysis/verification tools
§ Better human-computer interfaces
§ Data mining tools for code repositories

Vardi Tripakis Tabuada Solar-Lezama Seshia SangiovanniZdancewic

Hartmann Lafortune Kavraki Kress-Gazit Loo MadhusudanFoster

Bodik

Alur

Martin

Pappas

Expeditions in Computer Augmented Program Engineering

http://excape.cis.upenn.edu/

Cornell, Maryland, Michigan, MIT, Penn, Rice, UC Berkeley, UCLA, UIUC

2012--2018

End-User Programming

4

Can non-programmers communicate intent intuitively?
People commanding robots
Analysts harvesting data from the web
Network operators configuring switches

Opportunity: Logic to be programmed is simple

Possible Solution: Programming by Examples (or by Demonstration)

Programming By Examples (PBE)

Desired program P: bit-vector transformation that resets rightmost
substring of contiguous 1’s to 0’s

1. P should be constructed from standard bit-vector operations
|, &, ~, +, -, <<, >>, 0, 1, …

2. P specified using input-output examples
00101 à 00100
01010 à 01000
10110 à 10000

Desired solution:
x & (1 + (x | (x-1))

5

Input Output
(425)-706-7709 425-706-7709
510.220.5586 510-220-5586
1 425 235 7654 425-235-7654
425 745-8139 425-745-8139

FlashFill: PBE in Practice
Ref: Gulwani (POPL 2011)

Wired: Excel is now a lot easier for people who aren’t spreadsheet- and
chart-making pros. The application’s new Flash Fill feature
recognizes patterns, and will offer auto-complete options for your
data. For example, if you have a column of first names and a column
of last names, and want to create a new column of initials, you’ll only
need to type in the first few boxes before Excel recognizes what
you’re doing and lets you press Enter to complete the rest of the
column.

6

Program Optimization

7

Can regular programmers match experts in code performance?
Improved energy performance in resource constrained settings
Adoption to new computing platforms such as GPUs

Opportunity: Semantics-preserving code transformation

Possible Solution: Superoptimizing Compiler
Structure of transformed code may be dissimilar to original

Superoptimization Illustration

Given a program P, find a “better” equivalent program P’

average (bitvec[32] x, y) {
bitvec[64] x1 = x;
bitvec[64] y1 = y;
bitvec[64] z1 = (x1+y1)/2;
bitvec[32] z = z1;
return z

}

Find equivalent code without
extension to 64 bit vectors

8

average (x, y) =
(x and y) + [(x xor y) shift-right 1]

Side Channel Attacks on Cryptographic Circuits

9

PPRM1 AES S-Box implementation [Morioka and Satoh, 2002]

Vulnerability: Timing-based attack can reveal secret input In2

Countermeasure to Attack

10

FSA attack resilient ckt: All input-to-output paths have same delays

Manually hand-crafted solution [Schaumont et al, DATE 2014]

Synthesis of Attack Countermeasures

11

Given a circuit C, automatically synthesize a circuit C’ such that
1. C’ is functionally equivalent to C [sematic constraint]
2. All input-to-output paths in C’ have same length [syntactic constraint]

Existing EDA tools cannot handle this synthesis problem

Syntax-Guided Program Synthesis

Rich variety of projects in programming systems and software engineering

§ Programming by examples
§ Automatic program repair
§ Program superoptimization
§ Template-guided invariant generation
§ Autograding for programming assignments
§ Synthesis of patches against security vulnerabilities
§ Extracting SQL queries corresponding to Java code fragments

Computational problem at the core of all these synthesis projects:
Find a program that meets given syntactic and semantic constraints

12

Classical Program Synthesis

13

Specification
“What”

Logical relation j(x,y)
among input x and output y

Synthesizer

Implementation
“How”

Constructive proof of
Exists f. For all x. j(x,f(x))

Function f(x) such that
j(x,f(x))

Church (1957)

Syntax-Guided Program Synthesis

14

Semantic
Specification

Logical formula
j(x,y)

Synthesizer

Implementation

Syntactic
Specification

Set E of
expressions

Search for e in E
s.t. j(x,e(x))

www.sygus.org

Talk Outline

q Formalization of SyGuS

q Solving SyGuS

q SyGuS Competition and Recent Progress

q Conclusions

15

Syntax-Guided Program Synthesis

q Find a program snippet e such that
1. e is in a set E of programs (syntactic constraint)
2. e satisfies logical specification j (semantic constraint)

q Core computational problem in many synthesis tools/applications

16

www.sygus.org

Can we formalize and standardize this computational problem?

Inspiration: Success of SMT solvers in formal verification

SMT: Satisfiability Modulo Theories

q Computational problem: Find a satisfying assignment to a formula

§ Boolean + Int types, logical connectives, arithmetic operators
§ Bit-vectors + bit-manipulation operations in C
§ Boolean + Int types, logical/arithmetic ops + Uninterpreted functs

q “Modulo Theory”: Interpretation for symbols is fixed

§ Can use specialized algorithms (e.g. for arithmetic constraints)

17

SMT Success Story

18

SMT-LIB Standardized Interchange Format (smt-lib.org)
Problem classification + Benchmark repositories
LIA, LIA_UF, LRA, QF_LIA, …

+ Annual Competition (smt-competition.org)

Z3 Yices CVC4 MathSAT5

Testing Verification Planning …

…

Control

Syntax-Guided Synthesis (SyGuS) Problem

q Fix a background theory T: fixes types and operations

q Function to be synthesized: name f along with its type
§ General case: multiple functions to be synthesized

q Inputs to SyGuS problem:
§ Specification j(x, f(x))

Typed formula using symbols in T + symbol f
§ Set E of expressions given by a context-free grammar

Set of candidate expressions that use symbols in T

q Computational problem:
Output e in E such that j[f/e] is valid (in theory T)

Syntax-guided synthesis; FMCAD’13
with Bodik, Juniwal, Martin, Raghothaman, Seshia, Singh, Solar-Lezama, Torlak, Udupa 19

SyGuS Example 1

q Theory QF-LIA (Quantifier-free linear integer arithmetic)
Types: Integers and Booleans
Logical connectives, Conditionals, and Linear arithmetic
Quantifier-free formulas

q Function to be synthesized f (int x1, x2) : int

q Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

q Candidate Implementations: Linear expressions
LinExp := x1 | x2 | Const | LinExp + LinExp | LinExp - LinExp

q No solution exists

20

SyGuS Example 2

q Theory QF-LIA

q Function to be synthesized: f (int x1 , x2) : int

q Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

q Candidate Implementations: Conditional expressions without +

Term := x1 | x2 | Const | If-Then-Else (Cond, Term, Term)
Cond := Term <= Term | Cond & Cond | ~ Cond | (Cond)

q Possible solution:
If-Then-Else (x1 ≤ x2, x2, x1)

21

SyGuS as Active Learning

22

Search
Algorithm

Verification
Oracle

Initial examples I

Fail Success

Candidate
Expression

Counterexample

Concept class: Set E of expressions

Examples: Concrete input values

Counterexample-Guided Inductive Synthesis
Solar-Lezama et al (ASPLOS’06)

q Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

q Set E: All expressions built from x1, x2,0,1, Comparison, If-Then-Else

23

Search
Algorithm

Verification
Oracle

I = { }
Candidate

f(x1, x2) = x1

Example
(x1=0, x2=1)

CEGIS Example

q Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

q Set E: All expressions built from x1, x2,0,1, Comparison, If-Then-Else

24

Search
Algorithm

Verification
Oracle

I = {(x1 =0, x2 =1) }

Candidate
f(x1, x2) = x2

Example
(x1 =1, x2 =0)

CEGIS Example

q Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

q Set E: All expressions built from x1, x2,0,1, Comparison, If-Then-Else

25

Search
Algorithm

Verification
Oracle

{(x1 =0, x2 =1)
(x1 =1, x2 =0)
(x1 =0, x2 =0)
(x1 =1, x2 =1)} Candidate

ITE(x1 ≤ x2,x2,x1)

Success

Enumerative Search

q Given:
Specification j(x, f(x))
Grammar for set E of candidate implementations
Finite set I of inputs

Find an expression e(x) in E s.t. j(x,e(x)) holds for all x in I

q Attempt 0: Enumerate expressions in E increasing size till you find one
that satisfies j for all inputs in I

q Attempt 1: Pruning of search space based on:
Expressions e1 and e2 are equivalent

if e1(x)=e2(x) on all x in I
Only one representative among equivalent subexpressions needs

to be considered for building larger expressions

26

Illustrating Pruning

q Spec: (x1 < f(x1, x2)) & (x2 < f(x1, x2))
q Grammar: E := x1 | x2 | 0 | 1 | E + E
q I = { (x1=0, x2=1) }
q Find an expression f such that (f(0,1) > 0) & (f(0,1) > 1)

27

x1 x2

0 1

x1 + x1 x1 + x2 x2 + x2

x2 + x1

SyGuS Competition

28

SYNTH-LIB Standardized Interchange Format
Problem classification + Benchmark repository

+ SyGuS-COMP (Competition for solvers) held since FLoC 2014

Program
optimization

Program
repair

Programming
by examples

Invariant
generation

Techniques for Solvers:
Learning, Constraint solvers, Enumerative/stochastic search

Collaborators: Fisman, Singh, Solar-Lezama

SyGuS Progress

q Over 1500 benchmarks
§ Hacker’s delight
§ Invariant generation (based on verification competition SV-Comp)
§ FlashFill (programming by examples system from Microsoft)
§ Synthesis of attack-resilient crypto circuits
§ Program repair
§ Motion planning
§ ICFP programming competition

q Special tracks for competition
§ Invariant generation
§ Programming by examples
§ Conditional linear arithmetic

q New solution strategies and applications
29

www.sygus.org

Scaling Enumerative Search by Divide & Conquer

q For the spec (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2)) the answer is
If-Then-Else (x1 ≤ x2, x2, x1)

q Size of expressions in conditionals and terms can be much smaller than
the size of the entire expression!

q f(x1, x2)= x2 is correct when x1 ≤ x2 and f(x1, x2)= x1 is correct otherwise

q Key idea:
§ Generate partial solutions that are correct on subsets of inputs and

combine them using conditionals
§ Enumerate terms and tests for conditionals separately
§ Terms and tests are put together using decision tree learning

With A. Radhakrishna and A. Udupa (TACAS 2017)

30

Enumerative Search with Decision Tree Learning

Desired decision tree:
Internal nodes: predicates + Leaves : expressions

31

x1

x2

x2+x2

…

Expressions / Labels Inputs / Data points

(x1=0, x2=1)

(x1=1, x2=0)

…
…

Predicates / Attributes

x1 ≤ x2

x2+x2 ≤ x1

…

…
Input x labeled with expression e

if j(x, e(x)) holds
Input x has attribute p

if p(x) holds

Acceleration Using Learned Probabilistic Models

q Can we bias the search towards likely programs?

q Step 1: Mine existing solutions to convert given grammar into a
probabilistic higher-order grammar
§ Weighted production rules
§ Conditioned on parent and sibling context
§ Transfer learning used to avoid overfitting

q Step 2: Enumerative search to generate expressions in decreasing
likelihood
§ Use A* with cost estimation heuristic
§ Integrated with previous optimizations (equivalence-based pruning…)

With W. Lee, K. Heo, and M. Naik (PLDI 2018)

32

Experimental Evaluation

q 2017 SyGuS Competition
Over 1500 benchmarks in different categories
Solution size:

about 20 AST nodes in string manipulation programs
upto 1000 AST nodes in bitvector manipulation programs

Number of participating solvers: 8
q State of the art solver: Euphony

Enumerative + Decision trees + Learned probabilistic models
q Evaluation of Euphony

70% of all benchmarks solved with a time limit of 1 hour
Average time ~ 10 min
Median time ~ 2 min

33

2018 Winner : CVC4 (Reynolds et al):
Integration of enumerative search with constraint solving !!

Emerging Applications of SyGuS

q Synthesis of crypto-circuits resilient to timing attack
(Wang et al, CAV 2016)

q Solving of quantified formulas in SMT solvers
(Biere et al, TACAS 2017)
To solve For all x. Exists y. j(x,y)
synthesize Skolem function f(x) such that For all x. j(x,f(x))

q Improved solver for bit-vector arithmetic in CVC4
(Barrett et al, CAV 2018)
Automatic generation of side conditions for bit-vector rewriting

q Automatic inversion of list manipulating programs
(Hu and D’Antoni, PLDI 2018)
Modeled as symbolic transducers and applied to string encoders 34

Back to Synthesis of Attack Countermeasures

35

Given a circuit C, automatically synthesize a circuit C’ such that
1. C’ is functionally equivalent to C [sematic constraint]
2. All input-to-output paths in C’ have same length [syntactic constraint]

Can be encoded directly as a SyGuS problem (Wang et al, CAV’16)

SyGuS Result

36

Original ckt prone to attack

Hand-crafted attack resilient ckt

SyGuS-generated Attack resilient ckt

Fully automatic
Smaller size
Shorter delays

q Problem definition
Syntactic constraint on space of allowed programs
Semantic constraint given by logical formula

q Solution strategies
Counterexample-guided inductive synthesis
Search in program space + Verification of candidate solutions

q Applications
Programming by examples
Program optimization with respect to syntactic constraints

q Annual competition (SyGuS-comp)
Standardized interchange format + benchmarks repository

37

SyGuS Conclusions

www.sygus.org

Program Synthesis: Future

q Can search-based synthesis scale?
§ Many unexplored opportunities to exploit program structure
§ Highly parallelizable

§ Computationally hard analysis problems such as model checking,
constraint solving were considered hopeless at the beginning

q How to integrate synthesis in programming environments ?
§ Synthesis tool can suggest code completions
§ User interaction model is key
§ Integration in next-generation compilers

q Relationship to machine learning ?

38

Learning to Program

q How can machine learning help program synthesis ?
§ Already discussed: decision trees, probabilistic models of code

q Programming by examples: can we train a neural network ?
§ Challenges: very few examples, program space far from continuous
§ Illustrative effort: Neural Flashfill (Microsoft)

q Can we mine code bases to suggest program completions
§ DARPA MUSE program
§ Illustrative effort: Bayou (Chaudhuri et al) for prediction of API

usage in Java code via Bayesian inference

39

Program Synthesis to Aid ML

q Can program synthesis help in design of ML systems?
§ Illustrative effort (Google Brain): Use syntax-guided synthesis to

generate script of API calls for TensorFlow programs

q Can program verification/synthesis contribute to “explainable AI”?
§ Synthesize logical input-output relationships for trained neural

networks
§ Synthesize adversarial test inputs to check robustness of neural

networks

40

41

Goal: Programming computers easier than communicating with people

Program
Synthesis

Machine
Learning

Human-Computer
Interaction

