
Combining data-driven and symbolic reasoning for
Invariant Synthesis in SMT

(Work in Progress)

Haniel Barbosa
Andrew Reynolds

Cesare Tinelli

Clark Barrett

MVD 2018

2018–09–29, Iowa City, IA, USA

SyGuS Solving

CEGIS [Solar-Lezama et al. 2006]

B Most common technique for SyGuS solving

B Specification: x ≤ f(x, y) ∧ y ≤ f(x, y)

B Expression search space:

I Combinations of x, y, 0, 1,≤,+, if-then-else

Learning
algorithm

Verification
oracle

Counter-examples = {}

Counter-Exemple
f(x=0,y=1)

Candidate
f(x,y)=x

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 1 / 16

CEGIS [Solar-Lezama et al. 2006]

B Most common technique for SyGuS solving

B Specification: x ≤ f(x, y) ∧ y ≤ f(x, y)

B Expression search space:

I Combinations of x, y, 0, 1,≤,+, if-then-else

Learning
algorithm

Verification
oracle

Counter-exemples =

{f(x=0,y=1)}

Counter-Exemple
f(x=1,y=0)

Candidate
f(x,y)=y

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 1 / 16

CEGIS [Solar-Lezama et al. 2006]

B Most common technique for SyGuS solving

B Specification: x ≤ f(x, y) ∧ y ≤ f(x, y)

B Expression search space:

I Combinations of x, y, 0, 1,≤,+, if-then-else

Learning
algorithm

Verification
oracle

Counter-examples =

{f(x=0,y=1)

f(x=1, y=0)

f(x=0, y=0)

f(x=1, y=1)}

Candidate
ITE(x ≤ y, y,x)

SUCCESS

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 1 / 16

Scalability issues

For this bit-vector grammar, enumerating

B Terms of size = 1 : .05 seconds

B Terms of size = 2 : .6 seconds

B Terms of size = 3 : 48 seconds

B Terms of size = 4 : 5.8 hours

B Terms of size = 5 : ??? (100+ days)

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 2 / 16

Divide-and-conquer [Alur et al. 2017]

B Generate partial solutions correct on subset of input
B Combine using conditionals

Only applicable for plainly separable specifications

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 3 / 16

A new framework for SyGuS solving

CegisUnif : combining CEGIS with unification

B Not limited to plainly separable specifications

B Data-driven: refinement lemmas generate data points

B Divide-and-conquer : each point yields a new function to synthesize

I Terms assigned to functions must satisfy refinement lemmas
I SMT solving provides term candidates through constraint solving

Learning
algorithm

Verification
oracle

Counter-examples =

f (x=0,y=1)

f (x=1, y=0)

f (x=0, y=0)

f (x=1, y=1)

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 4 / 16

CegisUnif : combining CEGIS with unification

B Not limited to plainly separable specifications

B Data-driven: refinement lemmas generate data points

B Divide-and-conquer : each point yields a new function to synthesize

I Terms assigned to functions must satisfy refinement lemmas
I SMT solving provides term candidates through constraint solving

Learning
algorithm

Verification
oracle

Counter-examples =

f_1 (x=0,y=1)

f_2 (x=1, y=0)

f_3 (x=0, y=0)

f_4 (x=1, y=1)

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 4 / 16

Feature synthesis

B Symbolic approach : derive minimal number of features that separate
conflicting points (i.e. those that cannot be assigned the same term)
I Optimal fairness criteria?

Currently: consider terms of size up to log2(#features)

B Heuristic approach : accumulate “feature pool” and chose separating
features based on information gain heuristic for decision tree learning

I Select features that maximize information gain

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 5 / 16

Solving Invariant synthesis with CegisUnif

Invariant Synthesis

Add(Int x, y) {
 z := x; i := 0;
 assume(y > 0);
 while (i < y) {
 z := z + 1;
 i := i + 1;
 }
 return z;
}

Post-condition: Result is the sum
of the inputs

Verification:

z = x ∧ i = 0 ∧ y > 0 → Inv(x, y, z, i)
Inv(x, y, z, i)∧ i < y ∧ z′ = z + 1 ∧ i′ = i+ 1 → Inv(x, y, z′, i′)
Inv(x, y, z, i)∧ i ≥ y → z = x+ y

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 6 / 16

Invariant Synthesis

Add(Int x, y) {
 z := x; i := 0;
 assume(y > 0);
 while (i < y) {
 z := z + 1;
 i := i + 1;
 }
 return z;
}

Post-condition:

Invariant?

Result is the sum
of the inputs

Verification:

z = x ∧ i = 0 ∧ y > 0 → Inv(x, y, z, i)
Inv(x, y, z, i)∧ i < y ∧ z′ = z + 1 ∧ i′ = i+ 1 → Inv(x, y, z′, i′)
Inv(x, y, z, i)∧ i ≥ y → z = x+ y

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 6 / 16

Invariant Synthesis

Add(Int x, y) {
 z := x; i := 0;
 assume(y > 0);
 while (i < y) {
 z := z + 1;
 i := i + 1;
 }
 return z;
}

Post-condition: Result is the sum
of the inputs

Verification:

z = x ∧ i = 0 ∧ y > 0 → Inv(x, y, z, i)
Inv(x, y, z, i)∧ i < y ∧ z′ = z + 1 ∧ i′ = i+ 1 → Inv(x, y, z′, i′)
Inv(x, y, z, i)∧ i ≥ y → z = x+ y

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 6 / 16

Invariant Synthesis in SyGuS

B State-of-the-art: LoopInvGen [Padhi and Millstein 2017]: data-driven
loop invariant inference with automatic feature synthesis
I Precondition inference from sets of “good” and “bad” states

Feature synthesis for solving conflicts

I PAC (probably approximately correct) algorithm for building candidate
invariants

B “Bad” states are dependent on model of initial condition (no
guaranteed convergence)

B No support for implication counterexamples

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 7 / 16

Invariant Synthesis with CegisUnif

B Refinement lemmas allows derivation of three kinds on data points:

I “good points” (invariant must always hold)
I “bad points” (invariant can never hold)
I “implication points” (if invariant holds in first point it must hold in

second)

B No need for restriction to one initial state

B Native support for implication counterexamples

B Straightforward usage of classic information gain heuristic to build
candidate solutions with decision tree learning

I SMT solver “resolves” implication counterexample points as “good” and
“bad”

I Out-of-the-box Shannon entropy

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 8 / 16

Preliminary results

Invariant generation for Lustre

B Test suite with 487 invariant synthesis benchmarks generated by the
Kind 2 model checker from Lustre models

B We evaluate three configurations of CVC4

I cegis : regular CEGIS

I c unif : CegisUnif framework with symbolic solution building

I c unif-infogain : CegisUnif framework with solution building determined
by information gain heuristic

B 1800s timeout

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 9 / 16

50 100 150 200 250 300
10−1

100

101

102

103

C
PU

tim
e

(s
)

c unif-infogain
cegis
c unif

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 10 / 16

10−1 100 101 102 103

cegis
10−1

100

101

102

103

c
un

if

B + 38 / - 13

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 11 / 16

10−1 100 101 102 103

c unif-infogain
10−1

100

101

102

103

c
un

if

B + 63 / - 19

10−1 100 101 102 103

c unif-infogain
10−1

100

101

102

103

ce
gi

s
B + 73 / - 42

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 12 / 16

Invariants category from SyGuS-Comp 2018

B Test suite with 127 invariant synthesis benchmarks from numerous
applications

B We evaluate three configurations of CVC4

I cegis : regular CEGIS

I c unif : CegisUnif framework with symbolic solution building

I c unif-infogain : CegisUnif framework with solution building determined
by information gain heuristic

B We also compare against LoopInvGen, the current winner of the
invariants category in SyGuS-Comp

B 1800s timeout

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 13 / 16

50 60 70 80 90 100 110 120
10−1

100

101

102

103

C
PU

tim
e

(s
)

loopinvgen
cegis
c unif
c unif-infogain

10−1 100 101 102 103

cegis
10−1

100

101

102

103

c
un

if

10−1 100 101 102 103

c unif
10−1

100

101

102

103

c
un

if
-i

nf
og

ai
n

10−1 100 101 102 103

cegis
10−1

100

101

102

103

c
un

if
-i

nf
og

ai
n

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 14 / 16

Future work

B Adapt ICE [Garg et al. 2016] information gain heuristics to our setting;
derive new heuristics

B Extend heuristics to function synthesis [Alur et al. 2017]

B Use data to determine “relevant arguments”

I f1(0, 0, 0, 1, 2, 1, 0) � f2(1, 0, 0, 5, 2, 1, 3)

I Reducing noise: make points as similar as possible

f ′
1(1, 0, 0, 1, 2, 1, 0) � f ′

2(1, 0, 0, 5, 2, 1, 0)

I Only consider relevant arguments when synthesizing features

Can drastically reduce search space

Combining data-driven and symbolic reasoning for Invariant Synthesis (WIP) 15 / 16

References

Alur, Rajeev, Arjun Radhakrishna, and Abhishek Udupa (2017). “Scaling Enumerative
Program Synthesis via Divide and Conquer”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS). Ed. by
Axel Legay and Tiziana Margaria. Vol. 10205. Lecture Notes in Computer Science,
pp. 319–336.

Garg, Pranav et al. (2016). “Learning invariants using decision trees and implication
counterexamples”. In: Symposium on Principles of Programming Languages. Ed. by
Rastislav Bod́ık and Rupak Majumdar. ACM, pp. 499–512.

Padhi, Saswat and Todd D. Millstein (2017). “Data-Driven Loop Invariant Inference with
Automatic Feature Synthesis”. In: CoRR abs/1707.02029. arXiv: 1707.02029.

Solar-Lezama, Armando et al. (2006). “Combinatorial sketching for finite programs”. In:
Architectural Support for Programming Languages and Operating Systems (ASPLOS).
Ed. by John Paul Shen and Margaret Martonosi. ACM, pp. 404–415.

http://arxiv.org/abs/1707.02029

	SyGuS Solving
	A new framework for SyGuS solving
	Solving Invariant synthesis with CegisUnif
	Preliminary results
	References

