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SyGuS Solving



CEGIS [Solar-Lezama et al. 2006]

B Most common technique for SyGuS solving

B Specification: x ≤ f(x, y) ∧ y ≤ f(x, y)

B Expression search space:

I Combinations of x, y, 0, 1,≤,+, if-then-else

Learning
algorithm

Verification
oracle

Counter-examples = {}

Counter-Exemple
f(x=0,y=1)

Candidate
f(x,y)=x
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Scalability issues

For this bit-vector grammar, enumerating

B Terms of size = 1 : .05 seconds

B Terms of size = 2 : .6 seconds

B Terms of size = 3 : 48 seconds

B Terms of size = 4 : 5.8 hours

B Terms of size = 5 : ??? (100+ days)
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Divide-and-conquer [Alur et al. 2017]

B Generate partial solutions correct on subset of input
B Combine using conditionals

Only applicable for plainly separable specifications
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A new framework for SyGuS solving



CegisUnif : combining CEGIS with unification

B Not limited to plainly separable specifications

B Data-driven: refinement lemmas generate data points

B Divide-and-conquer : each point yields a new function to synthesize

I Terms assigned to functions must satisfy refinement lemmas
I SMT solving provides term candidates through constraint solving

Learning
algorithm

Verification
oracle

Counter-examples =

f (x=0,y=1)

f (x=1, y=0)

f (x=0, y=0)

f (x=1, y=1)
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Feature synthesis

B Symbolic approach : derive minimal number of features that separate
conflicting points (i.e. those that cannot be assigned the same term)
I Optimal fairness criteria?

Currently: consider terms of size up to log2(#features)

B Heuristic approach : accumulate “feature pool” and chose separating
features based on information gain heuristic for decision tree learning

I Select features that maximize information gain
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Solving Invariant synthesis with CegisUnif



Invariant Synthesis

Add(Int x, y) {
  z := x; i := 0;
  assume(y > 0);
  while (i < y) {
    z := z + 1;
    i := i + 1;
  }
  return z;
}

Post-condition: Result is the sum 
of the inputs

Verification:

z = x ∧ i = 0 ∧ y > 0 → Inv(x, y, z, i)
Inv(x, y, z, i)∧ i < y ∧ z′ = z + 1 ∧ i′ = i+ 1 → Inv(x, y, z′, i′)
Inv(x, y, z, i)∧ i ≥ y → z = x+ y
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Invariant Synthesis in SyGuS

B State-of-the-art: LoopInvGen [Padhi and Millstein 2017]: data-driven
loop invariant inference with automatic feature synthesis
I Precondition inference from sets of “good” and “bad” states

Feature synthesis for solving conflicts

I PAC (probably approximately correct) algorithm for building candidate
invariants

B “Bad” states are dependent on model of initial condition (no
guaranteed convergence)

B No support for implication counterexamples
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Invariant Synthesis with CegisUnif

B Refinement lemmas allows derivation of three kinds on data points:

I “good points” (invariant must always hold)
I “bad points” (invariant can never hold)
I “implication points” (if invariant holds in first point it must hold in

second)

B No need for restriction to one initial state

B Native support for implication counterexamples

B Straightforward usage of classic information gain heuristic to build
candidate solutions with decision tree learning

I SMT solver “resolves” implication counterexample points as “good” and
“bad”

I Out-of-the-box Shannon entropy
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Preliminary results



Invariant generation for Lustre

B Test suite with 487 invariant synthesis benchmarks generated by the
Kind 2 model checker from Lustre models

B We evaluate three configurations of CVC4

I cegis : regular CEGIS

I c unif : CegisUnif framework with symbolic solution building

I c unif-infogain : CegisUnif framework with solution building determined
by information gain heuristic

B 1800s timeout
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Invariants category from SyGuS-Comp 2018

B Test suite with 127 invariant synthesis benchmarks from numerous
applications

B We evaluate three configurations of CVC4

I cegis : regular CEGIS

I c unif : CegisUnif framework with symbolic solution building

I c unif-infogain : CegisUnif framework with solution building determined
by information gain heuristic

B We also compare against LoopInvGen, the current winner of the
invariants category in SyGuS-Comp

B 1800s timeout
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Future work

B Adapt ICE [Garg et al. 2016] information gain heuristics to our setting;
derive new heuristics

B Extend heuristics to function synthesis [Alur et al. 2017]

B Use data to determine “relevant arguments”

I f1(0, 0, 0, 1, 2, 1, 0) � f2(1, 0, 0, 5, 2, 1, 3)

I Reducing noise: make points as similar as possible

f ′
1(1, 0, 0, 1, 2, 1, 0) � f ′

2(1, 0, 0, 5, 2, 1, 0)

I Only consider relevant arguments when synthesizing features

Can drastically reduce search space
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