HyperPCTL: A Temporal Logic for Probabilistic Hyperproperties

Erika Ábrahám¹ Borzoo Bonakdarpour²

RWTH Aachen, Germany¹

Iowa State University, USA²

NЛ	Š		5	2	
	~	- 12		~	

Presentation outline

PyperPCTL Syntax and Semantics

HyperPCTL in Action

HyperPCTL Model Checking

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

EDAS Conference and Journal Management System

Click on the menu items above to submit and review papers.

Please indicate whether you want to receive call-for-papers by updating your areas of interest.

Your conflicts-of-interest have not been updated in the last three months. (Persons with conflicts-of-interest are those who should not review p the same institution.)

My pending, active and accepted papers

Only papers for upcoming conferences are shown.

Conference	Paper title (details)	Abstract or manuscript deadline	Edit	Add and delete authors	Upload paper	Files	Withdraw	Session
6000 Interns 2015		February 2, 2015 Anywhere on Earth	ø	0	final deadline		×	(not yet assigned)
REE IPOPS 2015		October 18, 2014 Anywhere on Earth			paper status	7		
IEEE IPOPS 2015		October 18, 2014 Anywhere on Earth			withdrawn			
10008-2015		December 23, 2014 Anywhere on Earth	0	0	paper deadline	۶	×	(not yet assigned)
10005-2015		December 23, 2014 Anywhere on Earth	6	0	paper deadline	7	⊠	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

EDAS Conference and Journal Management System

Click on the menu items above to submit and review papers.

Please indicate whether you want to receive call-for-papers by updating your areas of interest.

Your conflicts-of-interest have not been updated in the last three months. (Persons with conflicts-of-interest are those who should not review p the same institution.)

My pending, active and accepted papers

Only papers for upcoming conferences are shown.

Conference	Paper title (details)	Abstract or manuscript deadline	Edit	Add and delete authors	Upload paper	Files	Withdraw	Session
8000 IPOPS 2010		February 2, 2015 Anywhere on Earth	ø	0	final deadline		×	(not yet assigned)
	Terror Contestanting							
				0		2		
				0		200		

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

EDAS Conference and Journal Management System

Click on the menu items above to submit and review papers.

Please indicate whether you want to receive call-for-papers by updating your areas of interest.

Your conflicts-of-interest have not been updated in the last three months. (Persons with conflicts-of-interest are those who should not review p the same institution.)

My pending, active and accepted papers

Only papers for upcoming conferences are shown.

Conference	Paper title (details)	Abstract or manuscript deadline	Edit	Add and delete authors	Upload paper	Files	Withdraw	Session
				0				
REELINGING 2015		October 18, 2014 Anywhere on Earth			paper status	7		
ALLE IPOPS 2015								
10000 2015				0		2		
10003 2015		December 23, 2014 Anywhere on Earth		0	paper deadline	200		

EDAS Conference and Journal Management System

Click on the menu items above to submit and review papers.

Please indicate whether you want to receive call-for-papers by updating your areas of interest.

Your conflicts-of-interest have not been updated in the last three months. (Persons with conflicts-of-interest are those who should not review p the same institution.)

My pending, active and accepted papers

Only papers for upcoming conferences are shown.

Conference	Paper title (details)	Abstract or manuscript deadline	Edit	Add and delete authors	Upload paper	Files	Withdraw	Session
				0				
	-							
KONG 2015		December 23, 2014 Anywhere on Earth	ø	0	paper deadline	7	×	(not yet assigned)
100105-2015		December 23, 2014 Anywhere on Earth	6	0	paper deadline	2	×	

EDAS Conference and Journal Management System

Click on the menu items above to submit and review papers.

Please indicate whether you want to receive call-for-papers by updating your areas of interest.

Your conflicts-of-interest have not been updated in the last three months. (Persons with conflicts-of-interest are those who should not review p the same institution.)

My pending, active and accepted papers

Only papers for upcoming conferences are shown.

Conference	Paper title (details)	Abstract or manuscript deadline	Edit	Add and delete authors	Upload paper	Files	Withdraw	Session
6000 Interns 2015		February 2, 2015 Anywhere on Earth	ø	0	final deadline		×	(not yet assigned)
REE IPOPS 2015		October 18, 2014 Anywhere on Earth			paper status	7		
IEEE IPOPS 2015		October 18, 2014 Anywhere on Earth			withdrawn			
10008-2015		December 23, 2014 Anywhere on Earth	0	0	paper deadline	۶	×	(not yet assigned)
10005-2015		December 23, 2014 Anywhere on Earth	6	0	paper deadline	7	⊠	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

EDAS Conference and Journal Management System

Click on the menu items above to submit and review papers.

Please indicate whether you want to receive call-for-papers by updating your areas of interest.

Your conflicts-of-interest have not been updated in the last three months. (Persons with conflicts-of-interest are those who should not review p the same institution.)

My pending, active and accepted papers

Only papers for upcoming conferences are shown.

Conference	Paper title (details)	Abstract or manuscript deadline	Edit	Add and delete authors	Upload paper	Files	Withdraw	Session
8000 IPOPS 2015		February 2, 2015 Anywhere on Earth	ø	0	final deadline		×	(not yet assigned)
ALLE IPOPS 2015		October 18, 2014 Anywhere on Earth			paper status	7		
IEEE IPOPS		October 18, 2014 Anywhere on Earth			withdrawn			
10008-2015		December 23, 2014 Anywhere on Earth	ø	0	paper deadline	۶	⊠ ((not yet assigned)
10005-2015		December 23, 2014 Anywhere on Earth	6	0	paper deadline	2		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Htiple traces EDAS Conference and Journal Management System

Click on the menu items above to submit and review papers.

Please indicate whether you want to receive call-for-papers by updating ve

ess relation Your conflicts-of-interest have not been updated in the last three m the same institution.)

My pending, active and accepted papers

Only papers for upcoming conferences are shown.

Conference	Paper title (detar anno	Abstract or manuscript deadline	Edit	Add and delete authors	Upload pap e r	Files	Withdraw	Session
8000 militaria 2010	operties	February 2, 2015 Anywhere on Earth	ø	0	final deadline		⊠<	(not yet assigned)
ALLE IPOPS 2015	e provi	October 18, 2014 Anywhere on Earth			paper status	7		
ALLE IPOPP	trac	October 18, 2014 Anywhere on Earth			withdrawn			
Classica		December 23, 2014 Anywhere on Earth	ø	0	paper deadline	2		(not yet assigned)
N.405 2015		December 23, 2014 Anywhere on Earth	6	0	paper deadline	2	×	

mone

interest.

sons with conflicts-of-interest are those who should not review p

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Hyperproperties (Clarkson, Schneider - 2010)

A hyperproperty is a set of sets of traces.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Hyperproperties (Clarkson, Schneider - 2010)

A hyperproperty is a set of sets of traces.

Information-flow security:

- Noninterference
- Observational determinism
- Declassification
- Noninference

Hyperproperties (Clarkson, Schneider - 2010)

A hyperproperty is a set of sets of traces.

Information-flow security:

- Noninterference
- Observational determinism
- Declassification
- Noninference

Consistency models (concurrency):

- Linearizability
- Eventual/causal consistency

Hyperproperties (Clarkson, Schneider - 2010)

A hyperproperty is a set of sets of traces.

Information-flow security:

- Noninterference
- Observational determinism
- Declassification
- Noninference

Consistency models (concurrency):

- Linearizability
- Eventual/causal consistency

Temporal logics for hyperproperties:

- HyperLTL
- HyperCTL*

Hyperproperties (Clarkson, Schneider - 2010)

A hyperproperty is a set of sets of traces.

Information-flow security:

- Noninterference
- Observational determinism
- Declassification
- Noninference

Consistency models (concurrency):

- Linearizability
- Eventual/causal consistency

Temporal logics for hyperproperties:

- HyperLTL
- HyperCTL*

Hyperproperty Satisfaction

A system *P* satisfies a hyperproperty ψ (denoted, $P \models \psi$) iff Traces(*P*) $\in \psi$; i.e, language equality.

<ロ> <回> <回> < 回> < 回> < 回> < 回> < 回</p>

Timed Hyperproperties

м	OTIN	/at	ion
	5		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Probabilistic Hyperproperties

NЛ	2		5	1	
	~	 		 15-	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Probabilistic Hyperproperties

• Probabilistic hyperproperties express probabilistic relations between independent executions of a system.

м	OTIN	/at	ion
	5		

Probabilistic Hyperproperties

- Probabilistic hyperproperties express probabilistic relations between independent executions of a system.
- Probabilistic noninterference stipulates that the probability distribution on the final values on publicly observable channels (low outputs) is independent of the initial values of secrets (high inputs).

Motivation	HyperPCTL		

Probabilistic Hyperproperties

- Probabilistic hyperproperties express probabilistic relations between independent executions of a system.
- Probabilistic noninterference stipulates that the probability distribution on the final values on publicly observable channels (low outputs) is independent of the initial values of secrets (high inputs).

t: while h > 0 do $\{h \leftarrow h - 1\}; I \leftarrow 2$ $t': I \leftarrow 1$

where h is a high input and l is a low output.

Probabilistic Hyperproperties

- Probabilistic hyperproperties express probabilistic relations between independent executions of a system.
- Probabilistic noninterference stipulates that the probability distribution on the final values on publicly observable channels (low outputs) is independent of the initial values of secrets (high inputs).

t: while h > 0 do $\{h \leftarrow h - 1\}; I \leftarrow 2$ $t': I \leftarrow 1$

where h is a high input and l is a low output.

Assuming a uniform probabilistic scheduler:

Probabilistic Hyperproperties

- Probabilistic hyperproperties express probabilistic relations between independent executions of a system.
- Probabilistic noninterference stipulates that the probability distribution on the final values on publicly observable channels (low outputs) is independent of the initial values of secrets (high inputs).

t: while h > 0 do $\{h \leftarrow h - 1\}; I \leftarrow 2$ $t': I \leftarrow 1$

where h is a high input and l is a low output.

Assuming a uniform probabilistic scheduler:

• If h = 0, then at termination, $\mathbb{P}(l = 1) = 1/4$ and $\mathbb{P}(l = 2) = 3/4$.

Probabilistic Hyperproperties

- Probabilistic hyperproperties express probabilistic relations between independent executions of a system.
- Probabilistic noninterference stipulates that the probability distribution on the final values on publicly observable channels (low outputs) is independent of the initial values of secrets (high inputs).

t: while h > 0 do $\{h \leftarrow h - 1\}; I \leftarrow 2$ $t': I \leftarrow 1$

where h is a high input and l is a low output.

Assuming a uniform probabilistic scheduler:

- If h = 0, then at termination, $\mathbb{P}(l = 1) = 1/4$ and $\mathbb{P}(l = 2) = 3/4$.
- If h = 5, then at termination, $\mathbb{P}(l = 1) = 1/4096$ and $\mathbb{P}(l = 2) = 4095/4096$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Need for a Probabilistic Hyper Logic

The Need for a Probabilistic Hyper Logic

Existing probabilistic temporal logics such as PCTL and PCTL*, cannot draw connection between the probability of reaching certain states in independent executions.

The Need for a Probabilistic Hyper Logic

Existing probabilistic temporal logics such as PCTL and PCTL*, cannot draw connection between the probability of reaching certain states in independent executions.

Introducing probability operators to HyperLTL is not quite natural, as the semantics of HyperLTL is trace-based and probabilistic logics are branching-time in nature.

The Need for a Probabilistic Hyper Logic

Existing probabilistic temporal logics such as PCTL and PCTL*, cannot draw connection between the probability of reaching certain states in independent executions.

Introducing probability operators to HyperLTL is not quite natural, as the semantics of HyperLTL is trace-based and probabilistic logics are branching-time in nature.

HyperPCTL

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification over initial states of a discrete-time Markov chain.

The Need for a Probabilistic Hyper Logic

Existing probabilistic temporal logics such as PCTL and PCTL*, cannot draw connection between the probability of reaching certain states in independent executions.

Introducing probability operators to HyperLTL is not quite natural, as the semantics of HyperLTL is trace-based and probabilistic logics are branching-time in nature.

HyperPCTL

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification over initial states of a discrete-time Markov chain.

Probabilistic Noninterference

$$\forall \sigma. \forall \sigma'. \left(\mathsf{init}_{\sigma} \land \mathsf{init}_{\sigma'} \land h_{\sigma} \neq h_{\sigma'} \right) \Rightarrow \\ \left(\left(\mathbb{P} \diamondsuit (\mathsf{fin}_{\sigma} \land (l=1)_{\sigma}) = \mathbb{P} \diamondsuit (\mathsf{fin}_{\sigma'} \land (l=1)_{\sigma'}) \right) \land \\ \left(\mathbb{P} \diamondsuit (\mathsf{fin}_{\sigma} \land (l=2)_{\sigma}) = \mathbb{P} \diamondsuit (\mathsf{fin}_{\sigma'} \land (l=2)_{\sigma'}) \right) \right)$$

 $) \land \bigcirc$

Presentation outline

PyperPCTL Syntax and Semantics

ByperPCTL in Action

HyperPCTL Model Checking

HyperPCTL in Action

HyperPCTL Semantics

Example

$$\psi = \forall \sigma. \forall \sigma'. (init_{\sigma} \land init_{\sigma'}) \Rightarrow \left(\mathbb{P}(\diamondsuit a_{\sigma}) = \mathbb{P}(\diamondsuit a_{\sigma'}) \right)$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

HyperPCTL Semantics

Example

$$\psi = \forall \sigma. \forall \sigma'. (\textit{init}_{\sigma} \land \textit{init}_{\sigma'}) \Rightarrow \left(\mathbb{P}(\diamondsuit a_{\sigma}) = \mathbb{P}(\diamondsuit a_{\sigma'}) \right)$$

The probability of reaching a from s_0 is $0.4 + (0.2 \times 0.2) = 0.44$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

HyperPCTL Semantics

Example

$$\psi = \forall \sigma. \forall \sigma'. (\textit{init}_{\sigma} \land \textit{init}_{\sigma'}) \Rightarrow \left(\mathbb{P}(\diamondsuit a_{\sigma}) = \mathbb{P}(\diamondsuit a_{\sigma'}) \right)$$

The probability of reaching *a* from s_0 is $0.4 + (0.2 \times 0.2) = 0.44$.

The probability of reaching *a* from s_1 is $0.3 + (0.7 \times 0.2) = 0.44$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

N 71			
	uιv		

Presentation outline

2 HyperPCTL Syntax and Semantics

O HyperPCTL in Action

HyperPCTL Model Checking

◇ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲

Differential Privacy

Differential privacy is a commitment by a data holder to a data subject (normally an individual) that he/she will not be affected by allowing his/her data to be used in any study or analysis.

Differential Privacy

Differential privacy is a commitment by a data holder to a data subject (normally an individual) that he/she will not be affected by allowing his/her data to be used in any study or analysis.

Formally, let ϵ be a positive real number and A be a randomized algorithm that makes a query to an input database and produces an output. Algorithm A is called ϵ -differentially private, if for all databases D_1 and D_2 that differ on a single element, and all subsets S of possible outputs of A, we have:

Differential Privacy

Differential privacy is a commitment by a data holder to a data subject (normally an individual) that he/she will not be affected by allowing his/her data to be used in any study or analysis.

Formally, let ϵ be a positive real number and A be a randomized algorithm that makes a query to an input database and produces an output. Algorithm A is called ϵ -differentially private, if for all databases D_1 and D_2 that differ on a single element, and all subsets S of possible outputs of A, we have:

$$\Pr[\mathcal{A}(D_1) \in S] \leq e^{\epsilon} \cdot \Pr[\mathcal{A}(D_2) \in S].$$

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Differentia	al Privacy			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Differential Privacy

In a social study, each participant is faced with the query, "Have you engaged in activity A" and is instructed to follow this protocol:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Differential Privacy

In a social study, each participant is faced with the query, "Have you engaged in activity A" and is instructed to follow this protocol:

Flip a fair coin.

Differential Privacy

In a social study, each participant is faced with the query, "Have you engaged in activity A" and is instructed to follow this protocol:

- Flip a fair coin.
- If tail, then answer truthfully.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Differential Privacy

In a social study, each participant is faced with the query, "Have you engaged in activity A" and is instructed to follow this protocol:

- Flip a fair coin.
- If tail, then answer truthfully.
- If head, then flip the coin again and respond "Yes" if head and "No" if tail.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Differential Privacy

In a social study, each participant is faced with the query, "Have you engaged in activity A" and is instructed to follow this protocol:

- Flip a fair coin.
- If tail, then answer truthfully.
- If head, then flip the coin again and respond "Yes" if head and "No" if tail.

This protocol is (ln 3)-differentially private.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Differential Privacy

In a social study, each participant is faced with the query, "Have you engaged in activity A" and is instructed to follow this protocol:

- Flip a fair coin.
- If tail, then answer truthfully.
- If head, then flip the coin again and respond "Yes" if head and "No" if tail.

This protocol is (ln 3)-differentially private.

Differential Privacy

In a social study, each participant is faced with the query, "Have you engaged in activity A" and is instructed to follow this protocol:

- Flip a fair coin.
- If tail, then answer truthfully.
- If head, then flip the coin again and respond "Yes" if head and "No" if tail.

This protocol is (ln 3)-differentially private.

HyperPCTL formula for DP

$$\forall \sigma. \forall \sigma'. \left[\left((t=n)_{\sigma} \land (t=y)_{\sigma'} \right) \Rightarrow \left(\mathbb{P} \left(\diamondsuit(r=n)_{\sigma} \right) \le e^{\ln 3} \cdot \mathbb{P} \left(\diamondsuit(r=n)_{\sigma'} \right) \right) \right] \land \\ \left[\left((t=y)_{\sigma} \land (t=n)_{\sigma'} \right) \Rightarrow \left(\mathbb{P} \left(\diamondsuit(r=y)_{\sigma} \right) \le e^{\ln 3} \cdot \mathbb{P} \left(\diamondsuit(r=y)_{\sigma'} \right) \right) \right]$$

90

	••••		+ -	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Probabilistic Causation

Probabilistic Causation

Probabilistic causation aims to assert that the probability of occurring effect e if cause c happens is higher than the probability of occurring e when c does not happen.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Probabilistic Causation

Probabilistic causation aims to assert that the probability of occurring effect e if cause c happens is higher than the probability of occurring e when c does not happen.

Probabilistic Causation

$$\psi_{\mathsf{pc}_1} = \forall \sigma. \forall \sigma'. c_{\sigma} \land \left(\mathbb{P}(\diamondsuit e_{\sigma}) > \mathbb{P}(\neg c_{\sigma'} \mathcal{U} e_{\sigma'}) \right).$$

N /1			÷.	
		/d	u	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

HyperPCTL Examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

HyperPCTL Examples

Probabilistic Bisimulation

$$\begin{split} \varphi_{\mathsf{pb}} &= \forall \sigma. \forall \sigma'. \bigwedge_{i=1}^{k} \left[\left(\mathbf{a}_{\sigma}^{i} \wedge \mathbf{a}_{\sigma'}^{i} \right) \Rightarrow \left[\psi^{AP} \wedge \bigwedge_{j=1}^{k} \mathbb{P}(\bigcirc \mathbf{a}_{\sigma}^{j}) = \mathbb{P}(\bigcirc \mathbf{a}_{\sigma'}^{j}) \right] \right] \\ \text{where } \psi^{AP} &= \bigwedge_{\mathbf{a} \in AP} (\mathbf{a}_{\sigma} \Leftrightarrow \mathbf{a}_{\sigma'}). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

HyperPCTL Examples

Probabilistic Bisimulation

$$\begin{split} \varphi_{\mathsf{pb}} &= \forall \sigma. \forall \sigma'. \bigwedge_{i=1}^{k} \left[\left(\mathbf{a}_{\sigma}^{i} \wedge \mathbf{a}_{\sigma'}^{i} \right) \Rightarrow \left[\psi^{AP} \wedge \bigwedge_{j=1}^{k} \mathbb{P}(\bigcirc \mathbf{a}_{\sigma}^{j}) = \mathbb{P}(\bigcirc \mathbf{a}_{\sigma'}^{j}) \right] \right] \\ \text{where } \psi^{AP} &= \bigwedge_{\mathbf{a} \in AP} (\mathbf{a}_{\sigma} \Leftrightarrow \mathbf{a}_{\sigma'}). \end{split}$$

Probabilistic Noninterference

$$\forall \sigma. \forall \sigma'. \left(init_{\sigma} \land init_{\sigma'} \land h_{\sigma} \neq h_{\sigma'} \right) \Rightarrow \\ \left(\left(\mathbb{P} \diamondsuit (fin_{\sigma} \land (l=1)_{\sigma}) = \mathbb{P} \diamondsuit (fin_{\sigma'} \land (l=1)_{\sigma'}) \right) \land \\ \left(\mathbb{P} \diamondsuit (fin_{\sigma} \land (l=2)_{\sigma}) = \mathbb{P} \diamondsuit (fin_{\sigma'} \land (l=2)_{\sigma'}) \right) \right)$$

Presentation outline

2 HyperPCTL Syntax and Semantics

HyperPCTL in Action

HyperPCTL Model Checking

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

HyperPCTL Model Checking

Theorem 1

For a finite Markov chain \mathcal{M} and HyperPCTL formula ψ , the HyperPCTL model checking problem (to decide whether $\mathcal{M} \models \psi$) can be solved in time $O(\text{poly}(|\mathcal{M}|))$.

HyperPCTL Model Checking

Theorem 1

For a finite Markov chain \mathcal{M} and HyperPCTL formula ψ , the HyperPCTL model checking problem (to decide whether $\mathcal{M} \models \psi$) can be solved in time $O(\text{poly}(|\mathcal{M}|))$.

Theorem 2

The HyperPCTL model checking problem is PSPACE-hard in the number of quantifiers in the formula.

Presentation outline

Motivation

PyperPCTL Syntax and Semantics

HyperPCTL in Action

HyperPCTL Model Checking

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 重||||の��

Motivation Hype	erPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCIL Model Checking	Conclusion
Summary				

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Summary				

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Summary				

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification over initial states of a discrete-time Markov chain.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Summary				

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification over initial states of a discrete-time Markov chain.

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Summary				

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification over initial states of a discrete-time Markov chain.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We showed that HyperPCTL can express interesting requirements:

• Probabilistic bisimulation

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Summary				

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification over initial states of a discrete-time Markov chain.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Probabilistic bisimulation
- Probabilistic noninterference

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Summary				

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification over initial states of a discrete-time Markov chain.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Probabilistic bisimulation
- Probabilistic noninterference
- Differential privacy

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Summary				

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification over initial states of a discrete-time Markov chain.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Probabilistic bisimulation
- Probabilistic noninterference
- Differential privacy
- Probabilistic causation (causality)

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Summary				

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification over initial states of a discrete-time Markov chain.

We showed that HyperPCTL can express interesting requirements:

- Probabilistic bisimulation
- Probabilistic noninterference
- Differential privacy
- Probabilistic causation (causality)

We presented a polynomial-time model checking algorithm in the size of the input DTMC (exponential in the size of the input HyperPCTL formula).

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Future Wo	ork			

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Future V	Work			

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
	orle			

 $\mathsf{HyperPCTL}^*.$

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Future W/c). N			

 $\mathsf{HyperPCTL}^*.$

HyperPCTL in MDPs.

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Future \	Work			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\mathsf{HyperPCTL}^*.$

HyperPCTL in MDPs.

HyperPCTL with rewards.

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Future V	Work			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\mathsf{HyperPCTL}^*.$

HyperPCTL in MDPs.

HyperPCTL with rewards.

Parametric DTMC model checking.

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusion
Future V	Work			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

HyperPCTL*.

HyperPCTL in MDPs.

HyperPCTL with rewards.

Parametric DTMC model checking.

DTMC repair for HyperPCTL.

Motivation	HyperPCTL Syntax and Semantics	HyperPCTL in Action	HyperPCTL Model Checking	Conclusio

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you!