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Hyperproperties (Clarkson, Schneider - 2010)

A hyperproperty is a set of sets of traces.

Information-flow security:

Noninterference

Observational determinism

Declassification

Noninference

Consistency models (concurrency):

Linearizability

Eventual/causal consistency

Temporal logics for hyperproperties:

HyperLTL

HyperCTL∗

Hyperproperty Satisfaction

A system P satisfies a hyperproperty ψ (denoted, P |= ψ) iff Traces(P) ∈ ψ;
i.e, language equality.
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Timed Hyperproperties
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Probabilistic Hyperproperties

Probabilistic hyperproperties express probabilistic relations between
independent executions of a system.

Probabilistic noninterference stipulates that the probability distribution on
the final values on publicly observable channels (low outputs) is
independent of the initial values of secrets (high inputs).

t : while h > 0 do {h← h − 1}; l ← 2 t′ : l ← 1

where h is a high input and l is a low output.

Assuming a uniform probabilistic scheduler:

If h = 0, then at termination, P(l = 1) = 1/4 and P(l = 2) = 3/4.

If h = 5, then at termination, P(l = 1) = 1/4096 and
P(l = 2) = 4095/4096.
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The Need for a Probabilistic Hyper Logic

Existing probabilistic temporal logics such as PCTL and PCTL∗, cannot draw
connection between the probability of reaching certain states in independent
executions.

Introducing probability operators to HyperLTL is not quite natural, as the
semantics of HyperLTL is trace-based and probabilistic logics are
branching-time in nature.

HyperPCTL

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

Probabilistic Noninterference

∀σ.∀σ′.
(

initσ ∧ initσ′ ∧ hσ 6= hσ′

)
⇒((

P (finσ ∧ (l=1)σ) = P (finσ′ ∧ (l=1)σ′)
)
∧(

P (finσ ∧ (l=2)σ) = P (finσ′ ∧ (l=2)σ′)
))
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HyperPCTL Semantics

Example

s0 s1

s2 s3 s4

s5 s6

{init} {init}

{a}

{a}

0.4 0.2

0.4

0.7 0.3

1 0.8
0.2 1

1 1

ψ = ∀σ.∀σ′.(initσ ∧ initσ′)⇒
(
P( aσ) = P( aσ′)

)

The probability of reaching a from s0 is 0.4 + (0.2× 0.2) = 0.44.

The probability of reaching a from s1 is 0.3 + (0.7× 0.2) = 0.44.
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Differential Privacy

Differential privacy is a commitment by a data holder to a data subject
(normally an individual) that he/she will not be affected by allowing his/her
data to be used in any study or analysis.

Formally, let ε be a positive real number and A be a randomized algorithm that
makes a query to an input database and produces an output. Algorithm A is
called ε-differentially private, if for all databases D1 and D2 that differ on a
single element, and all subsets S of possible outputs of A, we have:

Pr [A(D1) ∈ S ] ≤ eε · Pr [A(D2) ∈ S ].
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Differential Privacy

In a social study, each participant is faced with the query, “Have you engaged
in activity A” and is instructed to follow this protocol:

1 Flip a fair coin.
2 If tail, then answer truthfully.
3 If head, then flip the coin again and respond “Yes” if head and “No” if tail.

This protocol is (ln 3)-differentially private.

s0{t=y}

{r=y}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

HyperPCTL formula for DP

∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
⇒
(
P
(

(r=n)σ
)
≤ e ln 3 · P

(
(r=n)σ′

))]
∧[(

(t=y)σ ∧ (t=n)σ′

)
⇒
(
P
(

(r=y)σ
)
≤ e ln 3 · P

(
(r=y)σ′

))]
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0.5 0.5

0.5 0.5

1

1 1

s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

HyperPCTL formula for DP

∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
⇒
(
P
(

(r=n)σ
)
≤ e ln 3 · P

(
(r=n)σ′

))]
∧[(

(t=y)σ ∧ (t=n)σ′

)
⇒
(
P
(

(r=y)σ
)
≤ e ln 3 · P

(
(r=y)σ′

))]
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Probabilistic Causation

Probabilistic causation aims to assert that the probability of occurring effect e
if cause c happens is higher than the probability of occurring e when c does
not happen.

Probabilistic Causation

ψpc1 = ∀σ.∀σ′.cσ ∧
(
P( eσ) > P(¬cσ′ Ueσ′)

)
.
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HyperPCTL Examples

Probabilistic Bisimulation

ϕpb = ∀σ.∀σ′.
k∧

i=1

[
(aiσ ∧ aiσ′)⇒

[
ψAP ∧

k∧
j=1

P( ajσ) = P( ajσ′)

]]

where ψAP =
∧

a∈AP(aσ ⇔ aσ′).

Probabilistic Noninterference

∀σ.∀σ′.
(

initσ ∧ initσ′ ∧ hσ 6= hσ′

)
⇒((

P (finσ ∧ (l=1)σ) = P (finσ′ ∧ (l=1)σ′)
)
∧(

P (finσ ∧ (l=2)σ) = P (finσ′ ∧ (l=2)σ′)
))
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HyperPCTL Model Checking

Theorem 1

For a finite Markov chain M and HyperPCTL formula ψ, the HyperPCTL
model checking problem (to decide whether M |= ψ) can be solved in time
O(poly(|M|)).

Theorem 2

The HyperPCTL model checking problem is PSPACE-hard in the number of
quantifiers in the formula.
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Summary

We introduced a temporal logic to express probabilistic hyperproperties.

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

We showed that HyperPCTL can express interesting requirements:

Probabilistic bisimulation

Probabilistic noninterference

Differential privacy

Probabilistic causation (causality)

We presented a polynomial-time model checking algorithm in the size of the
input DTMC (exponential in the size of the input HyperPCTL formula).
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Future Work

On-the-fly model checking algorithm without full blown generation of the
self-composition.

HyperPCTL∗.

HyperPCTL in MDPs.

HyperPCTL with rewards.

Parametric DTMC model checking.

DTMC repair for HyperPCTL.
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