
Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

HyperPCTL: A Temporal Logic for Probabilistic Hyperproperties

Erika Ábrahám1 Borzoo Bonakdarpour2

RWTH Aachen, Germany1

Iowa State University, USA2

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Presentation outline

1 Motivation

2 HyperPCTL Syntax and Semantics

3 HyperPCTL in Action

4 HyperPCTL Model Checking

5 Conclusion

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Motivation

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Motivation

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Motivation

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Motivation

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Motivation

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Motivation

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Motivation

Classi
cal tra

ce properti
es cannot express

relatio
n among multip

le
tra

ces

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Hyperproperties (Clarkson, Schneider - 2010)

A hyperproperty is a set of sets of traces.

Information-flow security:

Noninterference

Observational determinism

Declassification

Noninference

Consistency models (concurrency):

Linearizability

Eventual/causal consistency

Temporal logics for hyperproperties:

HyperLTL

HyperCTL∗

Hyperproperty Satisfaction

A system P satisfies a hyperproperty ψ (denoted, P |= ψ) iff Traces(P) ∈ ψ;
i.e, language equality.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Hyperproperties (Clarkson, Schneider - 2010)

A hyperproperty is a set of sets of traces.

Information-flow security:

Noninterference

Observational determinism

Declassification

Noninference

Consistency models (concurrency):

Linearizability

Eventual/causal consistency

Temporal logics for hyperproperties:

HyperLTL

HyperCTL∗

Hyperproperty Satisfaction

A system P satisfies a hyperproperty ψ (denoted, P |= ψ) iff Traces(P) ∈ ψ;
i.e, language equality.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Hyperproperties (Clarkson, Schneider - 2010)

A hyperproperty is a set of sets of traces.

Information-flow security:

Noninterference

Observational determinism

Declassification

Noninference

Consistency models (concurrency):

Linearizability

Eventual/causal consistency

Temporal logics for hyperproperties:

HyperLTL

HyperCTL∗

Hyperproperty Satisfaction

A system P satisfies a hyperproperty ψ (denoted, P |= ψ) iff Traces(P) ∈ ψ;
i.e, language equality.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Hyperproperties (Clarkson, Schneider - 2010)

A hyperproperty is a set of sets of traces.

Information-flow security:

Noninterference

Observational determinism

Declassification

Noninference

Consistency models (concurrency):

Linearizability

Eventual/causal consistency

Temporal logics for hyperproperties:

HyperLTL

HyperCTL∗

Hyperproperty Satisfaction

A system P satisfies a hyperproperty ψ (denoted, P |= ψ) iff Traces(P) ∈ ψ;
i.e, language equality.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Hyperproperties (Clarkson, Schneider - 2010)

A hyperproperty is a set of sets of traces.

Information-flow security:

Noninterference

Observational determinism

Declassification

Noninference

Consistency models (concurrency):

Linearizability

Eventual/causal consistency

Temporal logics for hyperproperties:

HyperLTL

HyperCTL∗

Hyperproperty Satisfaction

A system P satisfies a hyperproperty ψ (denoted, P |= ψ) iff Traces(P) ∈ ψ;
i.e, language equality.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Timed Hyperproperties

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Probabilistic Hyperproperties

Probabilistic hyperproperties express probabilistic relations between
independent executions of a system.

Probabilistic noninterference stipulates that the probability distribution on
the final values on publicly observable channels (low outputs) is
independent of the initial values of secrets (high inputs).

t : while h > 0 do {h← h − 1}; l ← 2 t′ : l ← 1

where h is a high input and l is a low output.

Assuming a uniform probabilistic scheduler:

If h = 0, then at termination, P(l = 1) = 1/4 and P(l = 2) = 3/4.

If h = 5, then at termination, P(l = 1) = 1/4096 and
P(l = 2) = 4095/4096.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Probabilistic Hyperproperties

Probabilistic hyperproperties express probabilistic relations between
independent executions of a system.

Probabilistic noninterference stipulates that the probability distribution on
the final values on publicly observable channels (low outputs) is
independent of the initial values of secrets (high inputs).

t : while h > 0 do {h← h − 1}; l ← 2 t′ : l ← 1

where h is a high input and l is a low output.

Assuming a uniform probabilistic scheduler:

If h = 0, then at termination, P(l = 1) = 1/4 and P(l = 2) = 3/4.

If h = 5, then at termination, P(l = 1) = 1/4096 and
P(l = 2) = 4095/4096.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Probabilistic Hyperproperties

Probabilistic hyperproperties express probabilistic relations between
independent executions of a system.

Probabilistic noninterference stipulates that the probability distribution on
the final values on publicly observable channels (low outputs) is
independent of the initial values of secrets (high inputs).

t : while h > 0 do {h← h − 1}; l ← 2 t′ : l ← 1

where h is a high input and l is a low output.

Assuming a uniform probabilistic scheduler:

If h = 0, then at termination, P(l = 1) = 1/4 and P(l = 2) = 3/4.

If h = 5, then at termination, P(l = 1) = 1/4096 and
P(l = 2) = 4095/4096.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Probabilistic Hyperproperties

Probabilistic hyperproperties express probabilistic relations between
independent executions of a system.

Probabilistic noninterference stipulates that the probability distribution on
the final values on publicly observable channels (low outputs) is
independent of the initial values of secrets (high inputs).

t : while h > 0 do {h← h − 1}; l ← 2 t′ : l ← 1

where h is a high input and l is a low output.

Assuming a uniform probabilistic scheduler:

If h = 0, then at termination, P(l = 1) = 1/4 and P(l = 2) = 3/4.

If h = 5, then at termination, P(l = 1) = 1/4096 and
P(l = 2) = 4095/4096.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Probabilistic Hyperproperties

Probabilistic hyperproperties express probabilistic relations between
independent executions of a system.

Probabilistic noninterference stipulates that the probability distribution on
the final values on publicly observable channels (low outputs) is
independent of the initial values of secrets (high inputs).

t : while h > 0 do {h← h − 1}; l ← 2 t′ : l ← 1

where h is a high input and l is a low output.

Assuming a uniform probabilistic scheduler:

If h = 0, then at termination, P(l = 1) = 1/4 and P(l = 2) = 3/4.

If h = 5, then at termination, P(l = 1) = 1/4096 and
P(l = 2) = 4095/4096.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Probabilistic Hyperproperties

Probabilistic hyperproperties express probabilistic relations between
independent executions of a system.

Probabilistic noninterference stipulates that the probability distribution on
the final values on publicly observable channels (low outputs) is
independent of the initial values of secrets (high inputs).

t : while h > 0 do {h← h − 1}; l ← 2 t′ : l ← 1

where h is a high input and l is a low output.

Assuming a uniform probabilistic scheduler:

If h = 0, then at termination, P(l = 1) = 1/4 and P(l = 2) = 3/4.

If h = 5, then at termination, P(l = 1) = 1/4096 and
P(l = 2) = 4095/4096.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Probabilistic Hyperproperties

Probabilistic hyperproperties express probabilistic relations between
independent executions of a system.

Probabilistic noninterference stipulates that the probability distribution on
the final values on publicly observable channels (low outputs) is
independent of the initial values of secrets (high inputs).

t : while h > 0 do {h← h − 1}; l ← 2 t′ : l ← 1

where h is a high input and l is a low output.

Assuming a uniform probabilistic scheduler:

If h = 0, then at termination, P(l = 1) = 1/4 and P(l = 2) = 3/4.

If h = 5, then at termination, P(l = 1) = 1/4096 and
P(l = 2) = 4095/4096.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

The Need for a Probabilistic Hyper Logic

Existing probabilistic temporal logics such as PCTL and PCTL∗, cannot draw
connection between the probability of reaching certain states in independent
executions.

Introducing probability operators to HyperLTL is not quite natural, as the
semantics of HyperLTL is trace-based and probabilistic logics are
branching-time in nature.

HyperPCTL

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

Probabilistic Noninterference

∀σ.∀σ′.
(

initσ ∧ initσ′ ∧ hσ 6= hσ′

)
⇒((

P (finσ ∧ (l=1)σ) = P (finσ′ ∧ (l=1)σ′)
)
∧(

P (finσ ∧ (l=2)σ) = P (finσ′ ∧ (l=2)σ′)
))

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

The Need for a Probabilistic Hyper Logic

Existing probabilistic temporal logics such as PCTL and PCTL∗, cannot draw
connection between the probability of reaching certain states in independent
executions.

Introducing probability operators to HyperLTL is not quite natural, as the
semantics of HyperLTL is trace-based and probabilistic logics are
branching-time in nature.

HyperPCTL

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

Probabilistic Noninterference

∀σ.∀σ′.
(

initσ ∧ initσ′ ∧ hσ 6= hσ′

)
⇒((

P (finσ ∧ (l=1)σ) = P (finσ′ ∧ (l=1)σ′)
)
∧(

P (finσ ∧ (l=2)σ) = P (finσ′ ∧ (l=2)σ′)
))

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

The Need for a Probabilistic Hyper Logic

Existing probabilistic temporal logics such as PCTL and PCTL∗, cannot draw
connection between the probability of reaching certain states in independent
executions.

Introducing probability operators to HyperLTL is not quite natural, as the
semantics of HyperLTL is trace-based and probabilistic logics are
branching-time in nature.

HyperPCTL

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

Probabilistic Noninterference

∀σ.∀σ′.
(

initσ ∧ initσ′ ∧ hσ 6= hσ′

)
⇒((

P (finσ ∧ (l=1)σ) = P (finσ′ ∧ (l=1)σ′)
)
∧(

P (finσ ∧ (l=2)σ) = P (finσ′ ∧ (l=2)σ′)
))

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

The Need for a Probabilistic Hyper Logic

Existing probabilistic temporal logics such as PCTL and PCTL∗, cannot draw
connection between the probability of reaching certain states in independent
executions.

Introducing probability operators to HyperLTL is not quite natural, as the
semantics of HyperLTL is trace-based and probabilistic logics are
branching-time in nature.

HyperPCTL

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

Probabilistic Noninterference

∀σ.∀σ′.
(

initσ ∧ initσ′ ∧ hσ 6= hσ′

)
⇒((

P (finσ ∧ (l=1)σ) = P (finσ′ ∧ (l=1)σ′)
)
∧(

P (finσ ∧ (l=2)σ) = P (finσ′ ∧ (l=2)σ′)
))

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

The Need for a Probabilistic Hyper Logic

Existing probabilistic temporal logics such as PCTL and PCTL∗, cannot draw
connection between the probability of reaching certain states in independent
executions.

Introducing probability operators to HyperLTL is not quite natural, as the
semantics of HyperLTL is trace-based and probabilistic logics are
branching-time in nature.

HyperPCTL

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

Probabilistic Noninterference

∀σ.∀σ′.
(

initσ ∧ initσ′ ∧ hσ 6= hσ′

)
⇒((

P (finσ ∧ (l=1)σ) = P (finσ′ ∧ (l=1)σ′)
)
∧(

P (finσ ∧ (l=2)σ) = P (finσ′ ∧ (l=2)σ′)
))

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Presentation outline

1 Motivation

2 HyperPCTL Syntax and Semantics

3 HyperPCTL in Action

4 HyperPCTL Model Checking

5 Conclusion

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

HyperPCTL Semantics

Example

s0 s1

s2 s3 s4

s5 s6

{init} {init}

{a}

{a}

0.4 0.2

0.4

0.7 0.3

1 0.8
0.2 1

1 1

ψ = ∀σ.∀σ′.(initσ ∧ initσ′)⇒
(
P(aσ) = P(aσ′)

)

The probability of reaching a from s0 is 0.4 + (0.2× 0.2) = 0.44.

The probability of reaching a from s1 is 0.3 + (0.7× 0.2) = 0.44.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

HyperPCTL Semantics

Example

s0 s1

s2 s3 s4

s5 s6

{init} {init}

{a}

{a}

0.4 0.2

0.4

0.7 0.3

1 0.8
0.2 1

1 1

ψ = ∀σ.∀σ′.(initσ ∧ initσ′)⇒
(
P(aσ) = P(aσ′)

)
The probability of reaching a from s0 is 0.4 + (0.2× 0.2) = 0.44.

The probability of reaching a from s1 is 0.3 + (0.7× 0.2) = 0.44.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

HyperPCTL Semantics

Example

s0 s1

s2 s3 s4

s5 s6

{init} {init}

{a}

{a}

0.4 0.2

0.4

0.7 0.3

1 0.8
0.2 1

1 1

ψ = ∀σ.∀σ′.(initσ ∧ initσ′)⇒
(
P(aσ) = P(aσ′)

)
The probability of reaching a from s0 is 0.4 + (0.2× 0.2) = 0.44.

The probability of reaching a from s1 is 0.3 + (0.7× 0.2) = 0.44.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Presentation outline

1 Motivation

2 HyperPCTL Syntax and Semantics

3 HyperPCTL in Action

4 HyperPCTL Model Checking

5 Conclusion

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Differential Privacy

Differential privacy is a commitment by a data holder to a data subject
(normally an individual) that he/she will not be affected by allowing his/her
data to be used in any study or analysis.

Formally, let ε be a positive real number and A be a randomized algorithm that
makes a query to an input database and produces an output. Algorithm A is
called ε-differentially private, if for all databases D1 and D2 that differ on a
single element, and all subsets S of possible outputs of A, we have:

Pr [A(D1) ∈ S] ≤ eε · Pr [A(D2) ∈ S].

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Differential Privacy

Differential privacy is a commitment by a data holder to a data subject
(normally an individual) that he/she will not be affected by allowing his/her
data to be used in any study or analysis.

Formally, let ε be a positive real number and A be a randomized algorithm that
makes a query to an input database and produces an output. Algorithm A is
called ε-differentially private, if for all databases D1 and D2 that differ on a
single element, and all subsets S of possible outputs of A, we have:

Pr [A(D1) ∈ S] ≤ eε · Pr [A(D2) ∈ S].

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Differential Privacy

Differential privacy is a commitment by a data holder to a data subject
(normally an individual) that he/she will not be affected by allowing his/her
data to be used in any study or analysis.

Formally, let ε be a positive real number and A be a randomized algorithm that
makes a query to an input database and produces an output. Algorithm A is
called ε-differentially private, if for all databases D1 and D2 that differ on a
single element, and all subsets S of possible outputs of A, we have:

Pr [A(D1) ∈ S] ≤ eε · Pr [A(D2) ∈ S].

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Differential Privacy

In a social study, each participant is faced with the query, “Have you engaged
in activity A” and is instructed to follow this protocol:

1 Flip a fair coin.
2 If tail, then answer truthfully.
3 If head, then flip the coin again and respond “Yes” if head and “No” if tail.

This protocol is (ln 3)-differentially private.

s0{t=y}

{r=y}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

HyperPCTL formula for DP

∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
⇒
(
P
(

(r=n)σ
)
≤ e ln 3 · P

(
(r=n)σ′

))]
∧[(

(t=y)σ ∧ (t=n)σ′

)
⇒
(
P
(

(r=y)σ
)
≤ e ln 3 · P

(
(r=y)σ′

))]

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Differential Privacy

In a social study, each participant is faced with the query, “Have you engaged
in activity A” and is instructed to follow this protocol:

1 Flip a fair coin.
2 If tail, then answer truthfully.
3 If head, then flip the coin again and respond “Yes” if head and “No” if tail.

This protocol is (ln 3)-differentially private.

s0{t=y}

{r=y}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

HyperPCTL formula for DP

∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
⇒
(
P
(

(r=n)σ
)
≤ e ln 3 · P

(
(r=n)σ′

))]
∧[(

(t=y)σ ∧ (t=n)σ′

)
⇒
(
P
(

(r=y)σ
)
≤ e ln 3 · P

(
(r=y)σ′

))]

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Differential Privacy

In a social study, each participant is faced with the query, “Have you engaged
in activity A” and is instructed to follow this protocol:

1 Flip a fair coin.

2 If tail, then answer truthfully.
3 If head, then flip the coin again and respond “Yes” if head and “No” if tail.

This protocol is (ln 3)-differentially private.

s0{t=y}

{r=y}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

HyperPCTL formula for DP

∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
⇒
(
P
(

(r=n)σ
)
≤ e ln 3 · P

(
(r=n)σ′

))]
∧[(

(t=y)σ ∧ (t=n)σ′

)
⇒
(
P
(

(r=y)σ
)
≤ e ln 3 · P

(
(r=y)σ′

))]

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Differential Privacy

In a social study, each participant is faced with the query, “Have you engaged
in activity A” and is instructed to follow this protocol:

1 Flip a fair coin.
2 If tail, then answer truthfully.

3 If head, then flip the coin again and respond “Yes” if head and “No” if tail.

This protocol is (ln 3)-differentially private.

s0{t=y}

{r=y}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

HyperPCTL formula for DP

∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
⇒
(
P
(

(r=n)σ
)
≤ e ln 3 · P

(
(r=n)σ′

))]
∧[(

(t=y)σ ∧ (t=n)σ′

)
⇒
(
P
(

(r=y)σ
)
≤ e ln 3 · P

(
(r=y)σ′

))]

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Differential Privacy

In a social study, each participant is faced with the query, “Have you engaged
in activity A” and is instructed to follow this protocol:

1 Flip a fair coin.
2 If tail, then answer truthfully.
3 If head, then flip the coin again and respond “Yes” if head and “No” if tail.

This protocol is (ln 3)-differentially private.

s0{t=y}

{r=y}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

HyperPCTL formula for DP

∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
⇒
(
P
(

(r=n)σ
)
≤ e ln 3 · P

(
(r=n)σ′

))]
∧[(

(t=y)σ ∧ (t=n)σ′

)
⇒
(
P
(

(r=y)σ
)
≤ e ln 3 · P

(
(r=y)σ′

))]

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Differential Privacy

In a social study, each participant is faced with the query, “Have you engaged
in activity A” and is instructed to follow this protocol:

1 Flip a fair coin.
2 If tail, then answer truthfully.
3 If head, then flip the coin again and respond “Yes” if head and “No” if tail.

This protocol is (ln 3)-differentially private.

s0{t=y}

{r=y}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

HyperPCTL formula for DP

∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
⇒
(
P
(

(r=n)σ
)
≤ e ln 3 · P

(
(r=n)σ′

))]
∧[(

(t=y)σ ∧ (t=n)σ′

)
⇒
(
P
(

(r=y)σ
)
≤ e ln 3 · P

(
(r=y)σ′

))]

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Differential Privacy

In a social study, each participant is faced with the query, “Have you engaged
in activity A” and is instructed to follow this protocol:

1 Flip a fair coin.
2 If tail, then answer truthfully.
3 If head, then flip the coin again and respond “Yes” if head and “No” if tail.

This protocol is (ln 3)-differentially private.

s0{t=y}

{r=y}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

HyperPCTL formula for DP

∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
⇒
(
P
(

(r=n)σ
)
≤ e ln 3 · P

(
(r=n)σ′

))]
∧[(

(t=y)σ ∧ (t=n)σ′

)
⇒
(
P
(

(r=y)σ
)
≤ e ln 3 · P

(
(r=y)σ′

))]

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Differential Privacy

In a social study, each participant is faced with the query, “Have you engaged
in activity A” and is instructed to follow this protocol:

1 Flip a fair coin.
2 If tail, then answer truthfully.
3 If head, then flip the coin again and respond “Yes” if head and “No” if tail.

This protocol is (ln 3)-differentially private.

s0{t=y}

{r=y}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

s1{t=n}

{r=n}

{r=n} {r=y}

0.5 0.5

0.5 0.5

1

1 1

HyperPCTL formula for DP

∀σ.∀σ′.
[(

(t=n)σ ∧ (t=y)σ′

)
⇒
(
P
(

(r=n)σ
)
≤ e ln 3 · P

(
(r=n)σ′

))]
∧[(

(t=y)σ ∧ (t=n)σ′

)
⇒
(
P
(

(r=y)σ
)
≤ e ln 3 · P

(
(r=y)σ′

))]

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Probabilistic Causation

Probabilistic causation aims to assert that the probability of occurring effect e
if cause c happens is higher than the probability of occurring e when c does
not happen.

Probabilistic Causation

ψpc1 = ∀σ.∀σ′.cσ ∧
(
P(eσ) > P(¬cσ′ Ueσ′)

)
.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Probabilistic Causation

Probabilistic causation aims to assert that the probability of occurring effect e
if cause c happens is higher than the probability of occurring e when c does
not happen.

Probabilistic Causation

ψpc1 = ∀σ.∀σ′.cσ ∧
(
P(eσ) > P(¬cσ′ Ueσ′)

)
.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Probabilistic Causation

Probabilistic causation aims to assert that the probability of occurring effect e
if cause c happens is higher than the probability of occurring e when c does
not happen.

Probabilistic Causation

ψpc1 = ∀σ.∀σ′.cσ ∧
(
P(eσ) > P(¬cσ′ Ueσ′)

)
.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

HyperPCTL Examples

Probabilistic Bisimulation

ϕpb = ∀σ.∀σ′.
k∧

i=1

[
(aiσ ∧ aiσ′)⇒

[
ψAP ∧

k∧
j=1

P(ajσ) = P(ajσ′)

]]

where ψAP =
∧

a∈AP(aσ ⇔ aσ′).

Probabilistic Noninterference

∀σ.∀σ′.
(

initσ ∧ initσ′ ∧ hσ 6= hσ′

)
⇒((

P (finσ ∧ (l=1)σ) = P (finσ′ ∧ (l=1)σ′)
)
∧(

P (finσ ∧ (l=2)σ) = P (finσ′ ∧ (l=2)σ′)
))

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

HyperPCTL Examples

Probabilistic Bisimulation

ϕpb = ∀σ.∀σ′.
k∧

i=1

[
(aiσ ∧ aiσ′)⇒

[
ψAP ∧

k∧
j=1

P(ajσ) = P(ajσ′)

]]

where ψAP =
∧

a∈AP(aσ ⇔ aσ′).

Probabilistic Noninterference

∀σ.∀σ′.
(

initσ ∧ initσ′ ∧ hσ 6= hσ′

)
⇒((

P (finσ ∧ (l=1)σ) = P (finσ′ ∧ (l=1)σ′)
)
∧(

P (finσ ∧ (l=2)σ) = P (finσ′ ∧ (l=2)σ′)
))

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

HyperPCTL Examples

Probabilistic Bisimulation

ϕpb = ∀σ.∀σ′.
k∧

i=1

[
(aiσ ∧ aiσ′)⇒

[
ψAP ∧

k∧
j=1

P(ajσ) = P(ajσ′)

]]

where ψAP =
∧

a∈AP(aσ ⇔ aσ′).

Probabilistic Noninterference

∀σ.∀σ′.
(

initσ ∧ initσ′ ∧ hσ 6= hσ′

)
⇒((

P (finσ ∧ (l=1)σ) = P (finσ′ ∧ (l=1)σ′)
)
∧(

P (finσ ∧ (l=2)σ) = P (finσ′ ∧ (l=2)σ′)
))

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Presentation outline

1 Motivation

2 HyperPCTL Syntax and Semantics

3 HyperPCTL in Action

4 HyperPCTL Model Checking

5 Conclusion

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

HyperPCTL Model Checking

Theorem 1

For a finite Markov chain M and HyperPCTL formula ψ, the HyperPCTL
model checking problem (to decide whether M |= ψ) can be solved in time
O(poly(|M|)).

Theorem 2

The HyperPCTL model checking problem is PSPACE-hard in the number of
quantifiers in the formula.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

HyperPCTL Model Checking

Theorem 1

For a finite Markov chain M and HyperPCTL formula ψ, the HyperPCTL
model checking problem (to decide whether M |= ψ) can be solved in time
O(poly(|M|)).

Theorem 2

The HyperPCTL model checking problem is PSPACE-hard in the number of
quantifiers in the formula.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Presentation outline

1 Motivation

2 HyperPCTL Syntax and Semantics

3 HyperPCTL in Action

4 HyperPCTL Model Checking

5 Conclusion

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Summary

We introduced a temporal logic to express probabilistic hyperproperties.

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

We showed that HyperPCTL can express interesting requirements:

Probabilistic bisimulation

Probabilistic noninterference

Differential privacy

Probabilistic causation (causality)

We presented a polynomial-time model checking algorithm in the size of the
input DTMC (exponential in the size of the input HyperPCTL formula).

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Summary

We introduced a temporal logic to express probabilistic hyperproperties.

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

We showed that HyperPCTL can express interesting requirements:

Probabilistic bisimulation

Probabilistic noninterference

Differential privacy

Probabilistic causation (causality)

We presented a polynomial-time model checking algorithm in the size of the
input DTMC (exponential in the size of the input HyperPCTL formula).

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Summary

We introduced a temporal logic to express probabilistic hyperproperties.

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

We showed that HyperPCTL can express interesting requirements:

Probabilistic bisimulation

Probabilistic noninterference

Differential privacy

Probabilistic causation (causality)

We presented a polynomial-time model checking algorithm in the size of the
input DTMC (exponential in the size of the input HyperPCTL formula).

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Summary

We introduced a temporal logic to express probabilistic hyperproperties.

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

We showed that HyperPCTL can express interesting requirements:

Probabilistic bisimulation

Probabilistic noninterference

Differential privacy

Probabilistic causation (causality)

We presented a polynomial-time model checking algorithm in the size of the
input DTMC (exponential in the size of the input HyperPCTL formula).

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Summary

We introduced a temporal logic to express probabilistic hyperproperties.

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

We showed that HyperPCTL can express interesting requirements:

Probabilistic bisimulation

Probabilistic noninterference

Differential privacy

Probabilistic causation (causality)

We presented a polynomial-time model checking algorithm in the size of the
input DTMC (exponential in the size of the input HyperPCTL formula).

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Summary

We introduced a temporal logic to express probabilistic hyperproperties.

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

We showed that HyperPCTL can express interesting requirements:

Probabilistic bisimulation

Probabilistic noninterference

Differential privacy

Probabilistic causation (causality)

We presented a polynomial-time model checking algorithm in the size of the
input DTMC (exponential in the size of the input HyperPCTL formula).

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Summary

We introduced a temporal logic to express probabilistic hyperproperties.

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

We showed that HyperPCTL can express interesting requirements:

Probabilistic bisimulation

Probabilistic noninterference

Differential privacy

Probabilistic causation (causality)

We presented a polynomial-time model checking algorithm in the size of the
input DTMC (exponential in the size of the input HyperPCTL formula).

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Summary

We introduced a temporal logic to express probabilistic hyperproperties.

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

We showed that HyperPCTL can express interesting requirements:

Probabilistic bisimulation

Probabilistic noninterference

Differential privacy

Probabilistic causation (causality)

We presented a polynomial-time model checking algorithm in the size of the
input DTMC (exponential in the size of the input HyperPCTL formula).

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Summary

We introduced a temporal logic to express probabilistic hyperproperties.

HyperPCTL extends PCTL by allowing explicit and simultaneous quantification
over initial states of a discrete-time Markov chain.

We showed that HyperPCTL can express interesting requirements:

Probabilistic bisimulation

Probabilistic noninterference

Differential privacy

Probabilistic causation (causality)

We presented a polynomial-time model checking algorithm in the size of the
input DTMC (exponential in the size of the input HyperPCTL formula).

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Future Work

On-the-fly model checking algorithm without full blown generation of the
self-composition.

HyperPCTL∗.

HyperPCTL in MDPs.

HyperPCTL with rewards.

Parametric DTMC model checking.

DTMC repair for HyperPCTL.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Future Work

On-the-fly model checking algorithm without full blown generation of the
self-composition.

HyperPCTL∗.

HyperPCTL in MDPs.

HyperPCTL with rewards.

Parametric DTMC model checking.

DTMC repair for HyperPCTL.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Future Work

On-the-fly model checking algorithm without full blown generation of the
self-composition.

HyperPCTL∗.

HyperPCTL in MDPs.

HyperPCTL with rewards.

Parametric DTMC model checking.

DTMC repair for HyperPCTL.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Future Work

On-the-fly model checking algorithm without full blown generation of the
self-composition.

HyperPCTL∗.

HyperPCTL in MDPs.

HyperPCTL with rewards.

Parametric DTMC model checking.

DTMC repair for HyperPCTL.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Future Work

On-the-fly model checking algorithm without full blown generation of the
self-composition.

HyperPCTL∗.

HyperPCTL in MDPs.

HyperPCTL with rewards.

Parametric DTMC model checking.

DTMC repair for HyperPCTL.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Future Work

On-the-fly model checking algorithm without full blown generation of the
self-composition.

HyperPCTL∗.

HyperPCTL in MDPs.

HyperPCTL with rewards.

Parametric DTMC model checking.

DTMC repair for HyperPCTL.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Future Work

On-the-fly model checking algorithm without full blown generation of the
self-composition.

HyperPCTL∗.

HyperPCTL in MDPs.

HyperPCTL with rewards.

Parametric DTMC model checking.

DTMC repair for HyperPCTL.

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Thank you!

Motivation HyperPCTL Syntax and Semantics HyperPCTL in Action HyperPCTL Model Checking Conclusion

Thank you!

	Motivation
	HyperPCTL Syntax and Semantics
	HyperPCTL in Action
	HyperPCTL Model Checking
	Conclusion

