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Relational Reasoning

Many	problems	can	be	modeled	relationally
• Ontologies
• Network	systems
• High-level	system	design
• …

Relational	logic	is	well	suited	for	reasoning	about	
structurally	rich	problems



A	Motivating	Example



Modeling a Toy	File	System

𝑅𝑜𝑜𝑡	 ⊆ 𝐷𝑖𝑟
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There	is	a	root directory

The	contents defines	
relations	between	

directories	and	files	or	
directories

All	directories and	files
are	reachable	from	the	

root directory	by	
following	the	contents

Contents relation	is	acyclic

contentscontents
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Root

*	– reflexive-transitive	closure ^	– transitive	closure

A	Relational Solver



Technical Preliminaries

Satisfiability Modulo	Theories	(SMT)



Satisfiability Modulo	Theories	(SMT)

Decide	the	satisfiability	of	many-sorted	first-order	
logic formulas	with	respect	to	combinations	of	
background	theories

(a[i] > a[j] ) ∧ (str = “Hello World”) ∧ (len(str) + x = 3) ∧ (A ∨ B) ∧ (x ∈ S)

Arrays ArithmeticStrings Booleans Sets

SMT
Solver

SATUNSAT



Satisfiability Modulo	Theories	(SMT)

A	theory	𝓣 =	(Σ,	𝚰)	defines
• A	signature Σ:	a	set	of	non-logical	symbols
• A	class	of	Σ-interpretations	𝚰
• Examples:	integer	arithmetic,	strings,	finite	sets, …

Ø A simple theory: Σ> = 0, 1, +, =
Ø A	formula in	the	theory	𝓣>:	𝑥 + 0 = 1



Related	Work



Alloy

A	declarative	language	based	on	first-order	relational	
logic created	at	MIT

Model	and	analyze structurally-rich systems

SAT-based	analysis	by	the	Alloy	Analyzer
• Checks the	consistency	of	an	Alloy	Specification
• Can disprove but only prove a	given	property	for	an	
Alloy	specification within a given bounds



Analysis	of	Alloy	Specifications	via	SMT

El	Ghazi	et	al. [8, 9, 10] translates the	Alloy	kernel	
language	to	SMT-LIB	language	and	solves	using	SMT	
solvers	(AlloyPE)

The	resulting	SMT	formulas	are	difficult	to	solve	due
to heavy	usage	of	quantifiers	in	the	translation



Description	Logics	(DLs)

Fragments	of	relational	logic	for	efficient	knowledge	
representation	and	reasoning

Consider	on	purpose	only	unary	and	binary	relations

OWL:	a	standardized	semantic	web	ontology	language	
based	on	description	logics
•Efficient	solvers:	KONCLUDE,	HermiT, FaCT++ and	etc.



A	Theory	of	Finite	Set	𝓣𝓢 in	SMT

A	theory	𝓣𝓢 of	finite	sets	was	introduced	by Kshitij
Bansal	et	al. [3]

A modular set solver was	implemented in	CVC4

Signature	𝛴𝒮 of		𝓣𝓢
• Singleton	set	constructor:	[▁]: 	𝛼 → Set 𝛼
• Subset:	⊑		∶ Set 𝛼 	×	Set 𝛼 → Bool
• Membership:	∈	∶ 𝛼	×	Set 𝛼 → Bool															
• Union,	intersection,	set	difference:	

⊓,⊔, \	 ∶ Set 𝛼 	×	Set 𝛼 → Set 𝛼



A	Theory of Finite Relations 	𝓣𝓡

My Research



Type	Notations

𝐓𝐮𝐩𝒏 𝜶𝟏,… , 𝜶𝒏 :	a parametric	tuple	sort	(n	>	0)

𝐒𝐞𝐭(𝐓𝐮𝐩𝒏 𝜶𝟏,… , 𝜶𝒏 ):	a	relational	sort
abbreviated as	𝐑𝐞𝐥𝒏 𝜶𝟏,⋯ , 𝜶𝒏



Relational	Signature	𝛴ℛ of		𝓣𝓡

Tuple	constructor:
	_	,	 … , _	 ∶ 𝛼i×⋯	×	𝛼j→ Tupj 𝛼i, … , 𝛼j

Ø Example:	⟨1, 2⟩ a	binary	integer	tuple	constant	

Singleton	relation	constructor:
[q] ∶ Tupj 𝛼i, … , 𝛼j → 	Rels 𝛼i, … , 𝛼j

Ø Example:	 ⟨1, “Hello”⟩ a	singleton	set	of	integer and
string binary	tuple



Relational	Signature	𝛴ℛ of		𝓣𝓡
Product:	∗	∶ Relx 𝛼 	×	Relj 𝛽 → Relxzj 𝛼, 𝛽

Ø Example:	R1	= ⟨1, 2⟩, ⟨3, 4⟩ ;	R2	=	 ⟨5, 6⟩ 	
R1	∗ R2	=	 ⟨1, 2, 5, 6⟩, ⟨3, 4, 5, 6⟩

Join:	⋈	∶ Rel�zi 𝛼, 𝛾 	×	Rel�zi 𝛾, 𝛽 → Rel�z� 𝛼, 𝛽 	
						with	𝑝 + 𝑞 > 0

Ø Example:	R1	= ⟨1, “Hello”⟩, ⟨2, “Hi”⟩ ;	
R2	=	 ⟨“Hello”, 3⟩, ⟨“World”, 4⟩ ;	
R1	⋈ R2	=	 ⟨1, 3⟩ 	



Relational	Signature	𝛴ℛ of		𝓣𝓡

Transpose:	_qi: Relx 𝛼i,⋯ , 𝛼x → Relx 𝛼x,⋯ , 𝛼i

Ø Example:	R	= ⟨1, “Hello”⟩, ⟨2, “Hi”⟩ ;	
R-1 =	 ⟨“Hello”, 1⟩, ⟨“Hi”, 2⟩ ;	

Transitive	Closure:	_z: Rel� α, α → Rel� α, α

Ø Example:	R	= ⟨1, 2⟩, ⟨2, 3⟩ 	
R+ = ⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩



A	Calculus 𝓒𝓡 for	𝓣𝓡



A Compact Calculus	for		𝓣𝓢

Derivation	rules	for	intersection	and	union	



A Compact Calculus	for		𝓣𝓢

Derivation	rules	for	set	difference,	singleton,	
disequality and	contradiction



TRANSPOSE	Derivation	Rule	(_q𝟏)



JOIN	Derivation	Rule	(⋈)

𝓏 is	a	fresh	variable



PRODUCT	Derivation	Rule	(∗)



TRANSITIVE	CLOSURE	Derivation	Rule	(_z)

𝓏, 𝓏i, 𝓏� are	fresh	variables



An	Example

𝒮 = { 𝑎, 𝑏 ∈ 𝑅z, 𝑎, 𝑏 ∉ R, 𝑎, 𝑏 ∉ R ⋈ R}

𝒮 ∶= 𝒮 ∪ { 𝑎, 𝑏 ∈ R}

JOIN	UP

UNSAT

𝑎, 𝑏 ∉ R ⋈ R

EQ	UNSAT
𝒮 ∶= 𝒮 ∪ { 𝑎, 𝑘 ∈ R, 𝑘	𝑏 ∈ R}

𝑎, 𝑏 ∉ R

TCLOS	DOWN

𝒮 ∶= 𝒮 ∪ { 𝑎, 𝑏 ∈ R ⋈ R}
EQ	UNSAT

UNSAT
𝒮 ∶= 𝒮 ∪ { 𝑎, 𝑘i ∈ R, 𝑘i, 𝑘� ∈ R, 𝑘�	𝑏 ∈ R, 𝑘i ≉ 𝑘�}

NO	RULES	APPLY
(After exhaustively applying JOIN-UP)

SAT



Calculus		𝓒𝓡 Correctness



Calculus		𝓒𝓡 Correctness

Refutation	Sound – a	closed derivation	tree	proves	
that	input	constraints	are	UNSAT

Model	Sound – from	a	saturated	branch	of	a	derivation	
tree	one	can	extract	a	model	for	input	constraints

Detailed	proof	can	be	found	in	Meng	et	al.	[21]



Termination	for a	Fragment	of		𝓣𝓡

Termination:	If	S	is	a	finite	set	of	constraints	generated	
by	the	grammar	above,	then	all	derivation	trees	are	
finite.

Detailed	proof	can	be	found	in	Meng	et	al.	[21]



A Relational	Solver	in	CVC4

Prop
Engine

Theory
Engine

Relations

Arithmetic

Strings

Sets

Others

Uninterpreted
Function



A Relational	Solver	in	CVC4

• Allows	us to solve constraints from	a	combination	
of	relations	and	other	domains

• Extend SMT-LIB/CVC4 native language with
support	for relations

• Enables	natural mappings from several relational	
modeling languages to SMT

• Brings	to	those	languages	the	power	of	SMT	
solvers and	their	ability	to reason efficiently	about
built-in types



Applications	of	𝓣𝓡



Application 1: Alloy	to	CVC4

Support	Alloy kernel	language	in	SMT natively

Finite	model	finding	of	CVC4	can	efficiently	reason	
about problems	with	presence	of	quantifiers

Built	a	translator	from	Alloy	kernel	language	to	SMT

Can	disprove	and	prove	properties	with	respect	to	
Alloy	specifications



ALLOY KERNEL	LANGUAGE CVC4
Signature sig S S	: Rel1(Atom)

Field	f :	S1→	⋯ 	→ Sn of	a	sig	S f :	Reln+1(Atom,	…,	Atom)
f	⊑ S	∗ S1 ∗ ⋯∗ Sn

sig S1,	…	,	Sn extends S S1 ⊑ S,	…	,	Sn ⊑ S	
Si ⊓ Sj =	[	]	for	1	≤ i <	j	≤ n

S1 ⊔	⋯⊔ Sn =	S	
if	S	is	abstract

sig S1,	…	,	Sn in S, S1 ⊑ S,	…	,	Sn ⊑ S	



ALLOY KERNEL	LANGUAGE CVC4
Sets	Operators:	+,	&,−,	=,	in ⊔,⊓ −,	≈,⊑

Relational	Operators:	~,	⋅,	→,	^ _qi,	⋈,	∗,	_z

Logical	operators: and,	or,	not AND,	OR,	NOT

Quantifiers: all,	some FORALL,	EXISTS



Evaluation	on	Alloy	Benchmarks

Evaluated	CVC4	with	two	configurations
• CVC4:	enables	full	native	support	for	relational	operators
• CVC4+AX:	encodes	all	relational	operators	as	
uninterpreted	functions	with	axioms

Compared	with	Alloy	Analyzer	and	AlloyPE on	two	
sets	of	benchmarks:
1. From AlloyPE and
2. From an	academic	course



Evaluation	on	Alloy	Benchmarks

Compared	to	the	Alloy	Analyzer
• CVC4 is	overall	slower	for	SAT	benchmarks
• CVC4 solves	UNSAT	benchmarks,	whereas	the	Alloy	Analyzer	
can	only	answer	bounded	UNSAT

Compared	to	AlloyPE
• CVC4	solves	SAT	benchmarks,	whereas	AlloyPE solves	none
• CVC4 solves	most	of	AlloyPE’s benchmarks

Compared	to	CVC4+AX
• CVC4	solves	SAT	benchmarks,	whereas	CVC4+AX	solves	none	
• CVC4 solves	significantly	more	UNSAT	benchmarks	



Evaluation	on	SAT Benchmarks
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Evaluation	on	UNSAT Benchmarks
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Application	2:	OWL	DL	to	SMT

OWL	DL	based	on	an	expressive description	logic	
fragment

Built	a	translator	from	OWL	DL	to	SMT	in	𝓣𝓡

Check	logical consistency	of	OWL	models	using	CVC4



OWL	DL CVC4
Individual	name	a a :	Atom
Nominal	{a} {<a>}
Top	concept	T		
Bottom	concept	⊥

Univ,	{∀ a	:	Atom	|	<a>	∈ Univ}
[	]

Atomic	concept	C
Role	R

C	:	Rel1(Atom)
R :	Rel2(Atom,	Atom)

Union	C	⊔ D	
Intersection	C	⊓ D

C	⊔ D
C	⊓ D

Inverse	role	R–
Complement	¬C

R-1
Univ \ C



OWL	DL CVC4
Concept,	role	assertion	C(a),	R(a;	b) a ∈ C, <a,	b>	∈ R

Individual	(dis)equality	a	≈ b,	a	≉ b a	≈ b,	a	≉ b

Concept,	role	inclusion	C		⊑ D,	R	⊑ S C		⊑ D,	R	⊑ S

Concept,	role	equiv.	C	≡ D,	R	≡ S C	≈ D,	R	≈ S

Complex	role	inclusion	R1 ∘ R2⊑ S R1⋈ R2⊑ S

Role	disjointness Disjoint(R,	S) R	⊓ S	≈ [	]



OWL	DL CVC4
Existential	restriction	∃R.C R	⋈ C

Universal	restriction	∀R.C [	x	|	x	∈ Univ ∧ [x]	⋈ R	⊑ C	]

At-least	restriction	≥jR.C [	x	|	x	∈ Univ ∧ (∃ a1,	…	,	an:	Atom	
[<a1>,	…	,	<an>]	⊑ (([x]	⋈ R)	⊓ C)
∧	Dist(a1,	…	,	an))]

At-most	restriction	≤jR.C [	x	|	x	∈ Univ ∧ (∃ a1,	…	,	an:	Atom	
(([x]	⋈ R)	⊓ C)⊑ [<a1>,	…	,	<an>]	
∧ [<a1>,	…	,	<an>]	⊑ C)]

Local	reflexivity	∃R.Self [<x,	y>	|	<x,	y>	∈ R	x	≈ y]



Evaluation	on	OWL	Benchmarks

Evaluated	on	OWL	models	from	4th OWL	Reasoner	
Evaluation	competition

Compared	with	a	state	of	the	art	DL	reasoner	HermiT

For the ones (4269) we both solved:
• CVC4 takes 2.62s per benchmark and solves faster on 1617
benchmarks
• HermiT takes 1.76s per benchmark and solves faster on
2652 benchmarks



Comparison with HermiT
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Summary

• Introduced a theory of finite relations	in	SMT

• Developed a	refutation-sound	and	model-sound	
calculus	for	the theory of relations

• Demonstrated	useful applications in Alloy and OWL

• Shown promising	experimental	results on	Alloy	and	
OWL	benchmarks



Thank	you!
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A	Toy	File	System	Specification	in	Alloy

abstract	sig FSO {}
sig File	extends FSO {}
sig Dir	extends FSO {

contents:	Set FSO
}
-- contents	relation	is	acyclic
fact {all d:	Dir |	not (d	in d.^contents)}
-- Every	file	system	object	only	has	one	location
assert oneLocation {
all o	:	FSO |	lone d	:	FSO	|	o	in d.contents

}

check oneLocation for		7



An	Example

𝒮 = { 𝑎, 𝑏 ∉ Rqi, R ≈ Q, 𝑎 ∈ P, 𝑏 ∈ P, P ∗ P ≈ Q ⊓ T}

𝒮 ∶= 𝒮 ∪ { 𝑎, 𝑏 ∈ P ∗ P, 𝑏, 𝑎 ∈ P ∗ P, 𝑎, 𝑎 ∈ P ∗ P,… }
PROD	UP

TRANS	UP

P ∗ P ≈ Q ⊓ T

𝒮 ∶= 𝒮 ∪ { 𝑎, 𝑏 ∈ Rqi, … }

INTER	DOWN

𝑎, 𝑏 ∉ Rqi, R ≈ Q

𝒮 ∶= 𝒮 ∪ { 𝑎, 𝑏 ∈ Q, 𝑏, 𝑎 ∈ Q, 𝑎, 𝑎 ∈ Q, 𝑏, 𝑏 ∈ Q,… }

UNSAT
𝑎, 𝑏 ∉ Rqi

EQ	UNSAT



Satisfiability Modulo	Theories	(SMT)

A	theory	𝓣 =	(Σ,	𝚰)	defines
• A	signature Σ:	a	set	of	non-logical	symbols
• A	class	of	Σ-interpretations	𝚰
• Examples:	integer	arithmetic,	strings,	finite	sets, …

Ø A simple theory: Σ> = 0, 1, +,=
Ø A	formula in	the	theory	𝓣>:	𝑥 + 0 = 1


