
Runtime Model Predictive Verification
on Embedded Platforms 1

Pei Zhang, Jianwen Li, Joseph Zambreno, Phillip H. Jones, Kristin
Yvonne Rozier

Presenter: Pei Zhang

Iowa State University

peizhang@iastate.edu

September 28, 2018

1Work supported by NASA ECF NNX16AR57G and NSF CAREER Award
CNS-1552934.

1 / 32

Overview

1 Introduction
Overview

2 Preliminary
State Space Model

3 Methodology
Hardware Monitor
Model Predictive Runtime Verification

4 Evaluation
Simulation of MPRV
Disturbance Effect
WCET Analysis

5 Conclusion

6 Related Work

2 / 32

Introduction

Motivation

Light weight monitor for embedded platform;

Unobstrusive to a certified safety-critical system;

Providing timely information;

Runtime safety monitor

3 / 32

Introduction Overview

Overview of Design Architecture

Future Time Monitor

AP1 … APn

Supervisory Controller

Sensor

Controllers

Environment

On-chip

ControlFeedback

Conversion Function

Figure: High level architecture of model predictive runtime verication.

4 / 32

Introduction Overview

Overview of Design Architecture

Predictor

Future Time Monitor

AP1 APn

Supervisory Controller

Controller

Model

Model Predictor

Sensor

Controllers

Environment

On-chipControlFeedback

AP
1 AP

m

Figure: High level architecture of model predictive runtime verication.

5 / 32

Preliminary

Extending LTL for Safety Properties: MLTL

Mission-Time Linear Temporal Logic (MLTL) reasons about bounded
timelines:

finite set of atomic propositions {p q}
Boolean connectives: ¬, ∧, ∨, and →
temporal connectives with time bounds:

Symbol Operator Timeline

2[2,6]p Always[2,6] 0 1 2 3 4 5 6 7 8
p p p p p

3[0,7]p Eventually[0,7] 0 1 2 3 4 5 6 7 8
p

pU[1,5]q Until[1,5] 0 1 2 3 4 5 6 7 8
p p q

pR[3,8]q Release[3,8]
p,q

0 1 2 3 4 5 6 7 8
qqq

6 / 32

Preliminary

Model Predictive Function F ∶ Σ→ Σ∗.

Definition (Predictive MLTL Semantics)

Let π be a finite trace over Σ∗. The predictive truth value of the MLTL
formula ϕ with respect to π, denoted as [π ⊧ ϕ]p, is an element of{true, false, ?} defined as follows:

[π ⊧ ϕ]p =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

true if ∀π′ ∈ Σ∗ ⋅ (π ⋅ F(π) ⋅ π′) ⊧ ϕ;

false if ∀π′ ∈ Σ∗ ⋅ (π ⋅ F(π) ⋅ π′) /⊧ ϕ;

? (skip) Otherwise.

7 / 32

Preliminary State Space Model

State Space Model

A discrete state-space model defines what state a system will be in
one-time step into the future:

xk+1 = Axk +Buk (1)

yk = Cxk +Duk (2)

xk represents the state of the system at time k

uk represents the input acting on the system at time k

yk represents outputs of the system at time k

A is a matrix that defines the internal dynamics of the system

B is a matrix that defines how the input acting upon the system
impact its state

C is a matrix that transforms states of the system into outputs (yk)

8 / 32

Methodology Hardware Monitor

Abstract Syntax Tree (AST)

Q: How can we check MLTL satisfication in hardware?
Compile the MLTL formula into assembly code: e.g. ◻[0,2](!a0)

Line 0 ∶ s0← load (a0, time)
Line 1 ∶ s1← ¬ s0

Line 2 ∶ s2← ◻[0,2] s1

Each instruction are stored in a data structure called Shared Connection
Queue (SCQ).

9 / 32

Methodology Hardware Monitor

Computation Core

Instruction

Memory

PC

RAW Sensor Signals

(binary)

AP[1] AP[N]...

ATOMICs

v1

v2

...

Var Mem

FSM

L LOAD

¬ NEGATE

GLOBAL/FUTURE

AND/OR

UNTIL

CORE

RAM

Filters

I1

I2

...

SCQ

I1

I2

...

 𝜏e

I1

I2

...

 PTR

Queue Management

L ¬ □/◇ ∧/∨ U

∧/∨

□/◇

U

(a) Observer Processing Core.

Search SCQ

Observer
Algorithm

Increase PC

Find Data

Fetch
Instruction

Empty

Write Back

(b) State machine transitions.

Figure: Hardware design for embedded MLTL observer processor.

10 / 32

Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Read
Sensor

Runtime
Verification

Cache

Restore

1

2

3

4

5

6

Model
Prediction

Step 1

Convert sensor data into atomic propositions (APs) using predefined
atomic conversion functions.

11 / 32

Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Read
Sensor

Runtime
Verification

Cache

Restore

1

2

3

4

5

6

Model
Prediction

Step 2

Observer processing core conducts runtime verification over the newly
received APs.

12 / 32

Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Read
Sensor

Runtime
Verification

Cache

Restore

1

2

3

4

5

6

Model
Prediction

Step 3

Model Predictive Control (MPC) for a specified prediction horizon length
is executed to estimate future states of the system.

13 / 32

Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Read
Sensor

Runtime
Verification

Cache

Restore

1

2

3

4

5

6

Model
Prediction

Step 4

Contents of the SCQs are cached.

14 / 32

Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Read
Sensor

Runtime
Verification

Cache

Restore

1

2

3

4

5

6

Model
Prediction

Step 5

Observer processing core conducts runtime verification over the generated
trace of estimated future system states.

15 / 32

Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Read
Sensor

Runtime
Verification

Cache

Restore

1

2

3

4

5

6

Model
Prediction

Step 6

Restore cached SCQs contents. Thereby, placing the observer processing
core back into its original state.

16 / 32

Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Read
Sensor

Runtime
Verification

Cache

Restore

1

2

3

4

5

6

Model
Prediction

Step 7

Return to step 1), once the next sensor sampling period starts.

17 / 32

Evaluation Simulation of MPRV

MPRV on Moving a Point Mass

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

2.0

Po
sit

io
n

(m
) position

planned trajectory

Figure: Model predictive control of the height of a point mass.

Control input force ∈ [-1N, 1N].
Cost weighting: 2 with the error in mass position and 1 with its speed.
Prediction horizon: 100.
Controller actuation update rate to 10 Hz.

a0: absolute speed < 0.1m/s.

a1: absolute value of trajectory error < 0.08m.

18 / 32

Evaluation Simulation of MPRV

False

True

(3[5]a1) ∧ a0

0 10 20 30 40 50 60

Time (sec)

No Prediction

Predict 10 (1.0s)

Predict 50 (5.0s)

Figure: MPRV responsiveness for different prediction horizons: No prediction, 10 steps
(1s), 50 steps (5s).

False

True

a1 U[5,20]a0

0 10 20 30 40 50 60

Time (sec)

No Prediction

Predict 10 (1.0s)

Predict 50 (5.0s)

19 / 32

Evaluation Simulation of MPRV

Disturbance

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

2.0

Po
sit

io
n

(m
) position

planned trajectory

Figure: Unexpected disturbance taken place during control. The disturbance is marked
in by the yellow rectangle.

an external disturbance force being applied at time 14.6s and 35.0s.

a0: absolute speed < 0.5m/s.

a1: absolute value of trajectory error < 0.04m.

20 / 32

Evaluation Simulation of MPRV

Disturbance

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

2.0

Po
sit

io
n

(m
) position

planned trajectory

False

True

a1 ∧3[15]a0

0 10 20 30 40 50 60

Time (sec)

No Prediction

Predict 50 (5.0s)

Figure: Comparasion between MPRV and normal RV with disturbance.

21 / 32

Evaluation Simulation of MPRV

Disturbance

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

2.0

Po
sit

io
n

(m
) position

planned trajectory

False

True

a1 ∧3[15]a0

0 10 20 30 40 50 60

Time (sec)

No Prediction

Predict 50 (5.0s)

Figure: Comparasion between MPRV and normal RV with disturbance.

22 / 32

Evaluation Simulation of MPRV

Utilize the MPRV Predictions under Disturbance

1 Case 1: Disturbance instantly breaks MLTL rule.

2 Case 2: Disturbance does not instantly break the MLTL rule.

3 Case 3: Disturbance adverts the system from breaking the
MLTL in the future.

23 / 32

Evaluation Simulation of MPRV

Sensor Noise and Prediction Horizon Length

0.0 0.2 0.4 0.6
Noise Standard Deviation

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

a0

a1

a2

a4

3[15]a1◻[15]a1

◻[15]a4

(3[5]a3) ∧ a1

(a3 U[5,20]a1)

(a) Sensor noise impact on MPRV
accuracy. Prediction horizon length is

10 (1s)

0 10 20 30 40 50

Prediction Step Length (P)

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

a0

a1

a2

a4

3[15]a1◻[15]a1

◻[15]a4

(3[5]a3) ∧ a1

(a3 U[5,20]a1)

(b) Prediction horizon length impact
on MPRV accuracy. Sensor noise

standard deviation is 0.025.

Figure: Impact of sensor noise and prediction horizon length on MPRV accuracy.

a0: absolute value of trajectory error < 0.04m a1: absolute value of trajectory error < 0.08m
a2: absolute value of trajectory error < 0.20m a3: absolute speed > 0.6 m/s

a4: position > 1.0 m/s 24 / 32

Evaluation WCET Analysis

Worst Case Execution Time (WCET) Analysis

N .t = tbasic + tloop ∗N .X ≤ C ∗N .X (3)

where, N .X = ⎧⎪⎪⎨⎪⎪⎩
∑(N .iSCQ) N is binary operator

P + 1 N is unary operator
(4)

tbasic is the time for ‘Fetch Instruction’ and ‘Increase PC’ etc. in Fig. 3(b)
tloop is the time for ’Observer Algorithm’
C is a constant associated with the hardware computation core pipeline.
In our design, the execution time is bounded by C = 24e−8(unit: second)2.

2Based on our hardware running at a clock frequency of 100 MHz.
25 / 32

Evaluation WCET Analysis

0 20 40 60 80 100
Prediction Step Length (P)

0

200

400

600

800

∑ N(
N.X

)
a0

3[15]a0

(3[15]a3) ∨ a1

(3[50]a3) ∨ a1

(a3 U[5,20]a1) ∧ (3[20]a4)
(a3 U[5,20]a1) U[10,15]a4

Figure: Relationship between N .X and prediction horizon length for MLTL formulas of
varying complexity.

MPRV computational complexity: O(max(S,n ∗ P)),S is the total SCQ memory usage,
n is the total number of operators,P is the prediction step length.

26 / 32

Conclusion

Summary of Work

The primary contribution of this work is providing predictive runtime
verificaiton based on system model:

extension to an existing state-of-the-art RV tool, R2U2;

better mitigation of faults by enabling future-time requirements to be
evaluated;

hardware realiable by bounding resource usage;

27 / 32

Conclusion

The End

28 / 32

Conclusion

References I

Ebru Aydin Gol, Mircea Lazar, and Calin Belta, Temporal logic model
predictive control, Automatica 56 (2015), 78–85.

Hong Lu and Alessandro Forin, The design and implementation of
p2v, an architecture for zero-overhead online verification of software
programs, Tech. Report MSR-TR-2007-99, Microsoft Research,
August 2007.

Gary Nutt, Tutorial: Computer system monitors, Computer 8 (1975),
no. 11, 51–61.

R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu, Hardware
runtime monitoring for dependable cots-based real-time embedded
systems, 2008 Real-Time Systems Symposium, Nov 2008,
pp. 481–491.

29 / 32

Conclusion

References II

Vasumathi Raman, Alexandre Donzé, Mehdi Maasoumy, Richard M
Murray, Alberto Sangiovanni-Vincentelli, and Sanjit A Seshia, Model
predictive control with signal temporal logic specifications, Decision
and Control (CDC), 2014 IEEE 53rd Annual Conference on, IEEE,
2014, pp. 81–87.

Thomas Reinbacher, Kristin Yvonne Rozier, and Johann Schumann,
Temporal-logic based runtime observer pairs for system health
management of real-time systems, International Conference on Tools
and Algorithms for the Construction and Analysis of Systems,
Springer, 2014, pp. 357–372.

30 / 32

Related Work

Hardware Monitor for Temporal Logic

Related Hardware Monitor:

1975 as Nutt [Nut75] proposed using hardware to monitor computer
systems.

An FPGA-based hardware monitor, called BusMOP [PMCR08].

Hong created an automated tool, called P2V [LF07].

R2U2: soft-coded hardware monitor [RRS14].

31 / 32

Related Work

Predictive Runtime Verification

Interdisciplinary work between RV and control.

Model Predictive Control with Signal Temporal Logic Specifications
[RDM+14].

Temporal logic model predictive control [GLB15]

32 / 32

	Introduction
	Overview

	Preliminary
	State Space Model

	Methodology
	Hardware Monitor
	Model Predictive Runtime Verification

	Evaluation
	Simulation of MPRV
	Disturbance Effect
	WCET Analysis

	Conclusion
	Related Work

