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Introduction

Motivation

@ Light weight monitor for embedded platform;
@ Unobstrusive to a certified safety-critical system;

@ Providing timely information;
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[N el Overview

Overview of Design Architecture
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Figure: High level architecture of model predictive runtime verication.
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Figure: High level architecture of model predictive runtime verication.

/32



Extending LTL for Safety Properties: MLTL

Mission-Time Linear Temporal Logic (MLTL) reasons about bounded
timelines:

e finite set of atomic propositions {p q}
@ Boolean connectives: —, A, v, and —

@ temporal connectives with time bounds:

Symbol  Operator Timeline

O2,61P ALWAYS[2 6] C C . . . . . C C
Clo,71P EVENTUALLY [q,7] C C C C C C C . C
UNTIL[1,5] O B B ROnOnGnGn®

PUR51q O 1 2 3 4 5 6 7 3%
PRi3.81q  RELEASE[g) o 1 2 3 4 5 6 7 8

6/32



Preliminary

Model Predictive Function F : & - X~
Definition (Predictive MLTL Semantics)
Let w be a finite trace over X*. The predictive truth value of the MLTL

formula ¢ with respect to 7, denoted as [7 k= ¢]p, is an element of
{true, false, ?} defined as follows:

true if Vo' eX* (n-F(m) -7')Ep;

[ﬂ-':@]p: false if vﬂ-lez*'(ﬂ-'f(ﬂ')'ﬂ")%gp;
7 (skip) Otherwise.
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SEREa e
State Space Model

A discrete state-space model defines what state a system will be in
one-time step into the future:

Xk+1 = AXk + Buk (1)

Yk = CXk + Duk (2)

Xx represents the state of the system at time k

uy represents the input acting on the system at time k

°

°

@ yj represents outputs of the system at time k

@ A is a matrix that defines the internal dynamics of the system
°

B is a matrix that defines how the input acting upon the system
impact its state

C is a matrix that transforms states of the system into outputs (yx)
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Hardware Monitor
Abstract Syntax Tree (AST)

Q: How can we check MLTL satisfication in hardware?
Compile the MLTL formula into assembly code: e.g. Ojg2(!a0)

Line0: s0 < load (a0, time)
Linel: s1 < =50
Line?2: $2 < Opg,2) 51

Each instruction are stored in a data structure called Shared Connection

Queue (SCQ).
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Methodology Hardware Monitor
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(a) Observer Processing Core. (b) State machine transitions.

Figure: Hardware design for embedded MLTL observer processor.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Model
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Runtime
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Step 1

Convert sensor data into atomic propositions (APs) using predefined
atomic conversion functions.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Model
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Step 2

Observer processing core conducts runtime verification over the newly
received APs.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow
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Step 3

Model Predictive Control (MPC) for a specified prediction horizon length
is executed to estimate future states of the system.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Model
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Step 4
Contents of the SCQs are cached. J
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Model
Prediction

1

Runtime
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Step 5

Observer processing core conducts runtime verification over the generated
trace of estimated future system states.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Model
Prediction

___________

Step 6

Restore cached SCQs contents. Thereby, placing the observer processing
core back into its original state.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Model
Prediction

Restore

.
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Step 7
Return to step 1), once the next sensor sampling period starts. J

17/32



Simulation of MPRY
MPRV on Moving a Point Mass

—— position
=== planned trajectory
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Time (s)

Figure: Model predictive control of the height of a point mass.

Control input force € [-IN, 1N].

Cost weighting: 2 with the error in mass position and 1 with its speed.
Prediction horizon: 100.

Controller actuation update rate to 10 Hz.

@ a0: absolute speed < 0.1m/s.

@ al: absolute value of trajectory error < 0.08m.
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Figure: MPRV responsiveness for different prediction horizons: No prediction, 10 steps
(1s), 50 steps (5s).
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Disturbance
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Figure: Unexpected disturbance taken place during control. The disturbance is marked
in by the yellow rectangle.

an external disturbance force being applied at time 14.6s and 35.0s.

@ a0: absolute speed < 0.5m/s.

@ al: absolute value of trajectory error < 0.04m.
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Disturbance
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Figure: Comparasion between MPRV and normal RV with disturbance.
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Disturbance
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Figure: Comparasion between MPRV and normal RV with disturbance.
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Simulation of MPRV
Utilize the MPRV Predictions under Disturbance

@ Case 1: Disturbance instantly breaks MLTL rule.

@ Case 2: Disturbance does not instantly break the MLTL rule.

© Case 3: Disturbance adverts the system from breaking the
MLTL in the future.
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Sensor Noise and Prediction Horizon Length
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(a) Sensor noise impact on MPRV
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Figure: Impact of sensor noise and prediction horizon length on MPRV accuracy.
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a0: absolute value of trajectory error < 0.04m
a2: absolute value of trajectory error < 0.20m
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(b) Prediction horizon length impact
on MPRV accuracy. Sensor noise
standard deviation is 0.025.

al: absolute value of trajectory error < 0.08m

a3: absolute speed > 0.6:m/s
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WCET Analysis
Worst Case Execution Time (WCET) Analysis

N-t:tbasic+t/oop*N~X§C*N-X (3)

where, Y(N.ISCQ) N is binary operator
N.X = _ (4)

P+1 N is unary operator

thasic is the time for ‘Fetch Instruction’ and ‘Increase PC' etc. in Fig. 3(b)
tioop is the time for 'Observer Algorithm’

C is a constant associated with the hardware computation core pipeline.
In our design, the execution time is bounded by C = 24e~8(unit: second)?.

?Based on our hardware running at a clock frequency of-100 MHz.
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Figure: Relationship between A/.X and prediction horizon length for MLTL formulas of
varying complexity.

MPRYV computational complexity: O(max(S,n* P)),
S is the total SCQ memory usage,

n is the total number of operators,

‘P is the prediction step length.
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Summary of Work

The primary contribution of this work is providing predictive runtime
verificaiton based on system model:

@ extension to an existing state-of-the-art RV tool, R2U2;

@ better mitigation of faults by enabling future-time requirements to be
evaluated;

@ hardware realiable by bounding resource usage;
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The End
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Hardware Monitor for Temporal Logic

Related Hardware Monitor:

@ 1975 as Nutt [Nut75] proposed using hardware to monitor computer
systems.

@ An FPGA-based hardware monitor, called BusMOP [PMCROS].
@ Hong created an automated tool, called P2V [LF07].
e R2U2: soft-coded hardware monitor [RRS14].
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Related Work

Predictive Runtime Verification

Interdisciplinary work between RV and control.

@ Model Predictive Control with Signal Temporal Logic Specifications
[RDM*14].
@ Temporal logic model predictive control [GLB15]
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