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Introduction

Motivation

Light weight monitor for embedded platform;

Unobstrusive to a certified safety-critical system;

Providing timely information;

Runtime safety monitor
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Introduction Overview
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Figure: High level architecture of model predictive runtime verication.
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Figure: High level architecture of model predictive runtime verication.
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Preliminary

Extending LTL for Safety Properties: MLTL

Mission-Time Linear Temporal Logic (MLTL) reasons about bounded
timelines:

finite set of atomic propositions {p q}
Boolean connectives: ¬, ∧, ∨, and →
temporal connectives with time bounds:

Symbol Operator Timeline

2[2,6]p Always[2,6] 0 1 2 3 4 5 6 7 8
p p p p p

3[0,7]p Eventually[0,7] 0 1 2 3 4 5 6 7 8
p

pU[1,5]q Until[1,5] 0 1 2 3 4 5 6 7 8
p p q

pR[3,8]q Release[3,8]
p,q

0 1 2 3 4 5 6 7 8
qqq
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Preliminary

Model Predictive Function F ∶ Σ→ Σ∗.

Definition (Predictive MLTL Semantics)

Let π be a finite trace over Σ∗. The predictive truth value of the MLTL
formula ϕ with respect to π, denoted as [π ⊧ ϕ]p, is an element of{true, false, ?} defined as follows:

[π ⊧ ϕ]p =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

true if ∀π′ ∈ Σ∗ ⋅ (π ⋅ F(π) ⋅ π′) ⊧ ϕ;

false if ∀π′ ∈ Σ∗ ⋅ (π ⋅ F(π) ⋅ π′) /⊧ ϕ;

? (skip) Otherwise.
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Preliminary State Space Model

State Space Model

A discrete state-space model defines what state a system will be in
one-time step into the future:

xk+1 = Axk +Buk (1)

yk = Cxk +Duk (2)

xk represents the state of the system at time k

uk represents the input acting on the system at time k

yk represents outputs of the system at time k

A is a matrix that defines the internal dynamics of the system

B is a matrix that defines how the input acting upon the system
impact its state

C is a matrix that transforms states of the system into outputs (yk)
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Methodology Hardware Monitor

Abstract Syntax Tree (AST)

Q: How can we check MLTL satisfication in hardware?
Compile the MLTL formula into assembly code: e.g. ◻[0,2](!a0)

Line 0 ∶ s0← load (a0, time)
Line 1 ∶ s1← ¬ s0

Line 2 ∶ s2← ◻[0,2] s1

Each instruction are stored in a data structure called Shared Connection
Queue (SCQ).

9 / 32



Methodology Hardware Monitor
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Figure: Hardware design for embedded MLTL observer processor.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow
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Step 1

Convert sensor data into atomic propositions (APs) using predefined
atomic conversion functions.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow
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Step 2

Observer processing core conducts runtime verification over the newly
received APs.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow
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Step 3

Model Predictive Control (MPC) for a specified prediction horizon length
is executed to estimate future states of the system.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow

Read 
Sensor

Runtime 
Verification

Cache

Restore

1

2

3

4

5

6

Model 
Prediction

Step 4

Contents of the SCQs are cached.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow
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Step 5

Observer processing core conducts runtime verification over the generated
trace of estimated future system states.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow
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Step 6

Restore cached SCQs contents. Thereby, placing the observer processing
core back into its original state.
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Methodology Model Predictive Runtime Verification

Model Predictive Runtime Verification Processing Flow
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Step 7

Return to step 1), once the next sensor sampling period starts.
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Evaluation Simulation of MPRV

MPRV on Moving a Point Mass

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

2.0

Po
sit

io
n 

(m
) position

planned trajectory

Figure: Model predictive control of the height of a point mass.

Control input force ∈ [-1N, 1N].
Cost weighting: 2 with the error in mass position and 1 with its speed.
Prediction horizon: 100.
Controller actuation update rate to 10 Hz.

a0: absolute speed < 0.1m/s.

a1: absolute value of trajectory error < 0.08m.
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Evaluation Simulation of MPRV
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Figure: MPRV responsiveness for different prediction horizons: No prediction, 10 steps
(1s), 50 steps (5s).
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Evaluation Simulation of MPRV

Disturbance
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Figure: Unexpected disturbance taken place during control. The disturbance is marked
in by the yellow rectangle.

an external disturbance force being applied at time 14.6s and 35.0s.

a0: absolute speed < 0.5m/s.

a1: absolute value of trajectory error < 0.04m.
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Evaluation Simulation of MPRV

Disturbance
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Figure: Comparasion between MPRV and normal RV with disturbance.
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Evaluation Simulation of MPRV

Disturbance
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Figure: Comparasion between MPRV and normal RV with disturbance.
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Evaluation Simulation of MPRV

Utilize the MPRV Predictions under Disturbance

1 Case 1: Disturbance instantly breaks MLTL rule.

2 Case 2: Disturbance does not instantly break the MLTL rule.

3 Case 3: Disturbance adverts the system from breaking the
MLTL in the future.
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Evaluation Simulation of MPRV

Sensor Noise and Prediction Horizon Length
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(a) Sensor noise impact on MPRV
accuracy. Prediction horizon length is
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(b) Prediction horizon length impact
on MPRV accuracy. Sensor noise

standard deviation is 0.025.

Figure: Impact of sensor noise and prediction horizon length on MPRV accuracy.

a0: absolute value of trajectory error < 0.04m a1: absolute value of trajectory error < 0.08m
a2: absolute value of trajectory error < 0.20m a3: absolute speed > 0.6 m/s

a4: position > 1.0 m/s 24 / 32



Evaluation WCET Analysis

Worst Case Execution Time (WCET) Analysis

N .t = tbasic + tloop ∗N .X ≤ C ∗N .X (3)

where, N .X = ⎧⎪⎪⎨⎪⎪⎩
∑(N .iSCQ) N is binary operator

P + 1 N is unary operator
(4)

tbasic is the time for ‘Fetch Instruction’ and ‘Increase PC’ etc. in Fig. 3(b)
tloop is the time for ’Observer Algorithm’
C is a constant associated with the hardware computation core pipeline.
In our design, the execution time is bounded by C = 24e−8(unit: second)2.

2Based on our hardware running at a clock frequency of 100 MHz.
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Evaluation WCET Analysis
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Figure: Relationship between N .X and prediction horizon length for MLTL formulas of
varying complexity.

MPRV computational complexity: O(max(S,n ∗ P)),S is the total SCQ memory usage,
n is the total number of operators,P is the prediction step length.
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Conclusion

Summary of Work

The primary contribution of this work is providing predictive runtime
verificaiton based on system model:

extension to an existing state-of-the-art RV tool, R2U2;

better mitigation of faults by enabling future-time requirements to be
evaluated;

hardware realiable by bounding resource usage;
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Conclusion

The End
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Related Work

Hardware Monitor for Temporal Logic

Related Hardware Monitor:

1975 as Nutt [Nut75] proposed using hardware to monitor computer
systems.

An FPGA-based hardware monitor, called BusMOP [PMCR08].

Hong created an automated tool, called P2V [LF07].

R2U2: soft-coded hardware monitor [RRS14].
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Related Work

Predictive Runtime Verification

Interdisciplinary work between RV and control.

Model Predictive Control with Signal Temporal Logic Specifications
[RDM+14].

Temporal logic model predictive control [GLB15]
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